Telomere Science Library

Publications, Presentations, and Videos
about the Nobel-Prize Winning Science of Telomere Biology

cancer

Sort by:
Recent genome-wide association studies have identified several leukocyte telomere length (LTL)-related single nucleotide polymorphisms (SNPs). Our previous data demonstrated that two SNPs (rs398652 on 14q21 and rs621559 on 1p34.2) were associated with LTL and risk of esophageal squamous cell carcinoma in Chinese. However, the role of these genetic variants on glioma risk is still unknown. Therefore, we examined if these genetic variants have impact on the genetic susceptibility of glioma in...
Published 05/21/2014    Read More...
8-oxo-2'-deoxyguanosine (8-oxo-dG) is a nucleoside resulting from oxidative damage and is known to be mutagenic. 8-Oxo-dG has been related to aging and diseases, including neurological disorders and cancer. Recently, we reported that a fluorescent nucleoside derivative, adenosine-1,3-diazaphenoxazine (Adap), forms a stable base pair with 8-oxo-dG in DNA with accompanying efficient quenching. In this study, a new Adap derivative having an additional 2-amino group on the adenosine moiety...
Published 01/29/2014    Read More...
Increased proliferation rates as well as resistance to apoptosis are considered major obstacles for the treatment of patients with chronic myelogenous leukemia (CML), thus highlighting the need for novel therapeutic approaches. Since senescence has been recognized as a physiological barrier against tumorigenesis, senescence-based therapy could represent a new strategy against CML. DNA demethylating agent 5-aza-2'-deoxycytidine (DAC) was reported to induce cellular senescence but underlying...
Published 06/24/2014    Read More...
Telomere dysfunction promotes genomic instability and carcinogenesis via inappropriate end-to-end chromosomal rearrangements, or telomere fusions. Previous work indicates that the DNA Damage Response (DDR) factor 53BP1 promotes the fusion of telomeres rendered dysfunctional by loss of TRF2, but is dispensable for the fusion of telomeres lacking Pot1 or critically shortened (in telomerase-deficient mice). Here, we examine a role for 53BP1 at telomeres rendered dysfunctional by loss or catalytic...
Published 09/29/2014    Read More...
Telomere biology is frequently associated with disease evolution in human cancer and dysfunctional telomeres have been demonstrated to contribute to genetic instability. In BCR-ABL(+) chronic myeloid leukemia (CML), accelerated telomere shortening has been shown to correlate with leukemia progression, risk score and response to treatment. Here, we demonstrate that proliferation of murine CML-like bone marrow cells strongly depends on telomere maintenance. CML-like cells of telomerase knockout...
Published 03/07/2014    Read More...
The TERT-CLPTM1L region of chromosome 5p15.33 is a multi-cancer susceptibility locus that encodes the reverse transcriptase subunit, hTERT, of the telomerase enzyme. Numerous cancer-associated single-nucleotide polymorphisms (SNPs), including rs10069690, have been identified within the hTERT gene. The minor allele (A) at rs10069690 creates an additional splice donor site in intron 4 of hTERT, and is associated with an elevated risk of multiple cancers including breast and ovarian carcinomas. We...
Published 06/08/2015    Read More...
Genetic loci within the major histocompatibility complex (MHC) have been associated with nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-associated cancer, in several GWAS. Results outside this region have varied....
Published 11/06/2015    Read More...
As a universal tumor biomarker, research on the activity and inhibition of telomerase is of great importance for cancer diagnosis and therapy. Although the telomeric repeat amplification protocol (TRAP) has served as a powerful assay for detecting telomerase activity, its application has been significantly limited by amplification related errors and time-consuming procedure. To address the limitations of PCR-based protocol, a dual amplification fluorescence assay was developed for PCR-free...
Published 08/12/2015    Read More...
Telomere maintenance by the telomerase reverse transcriptase requires a noncoding RNA subunit that acts as a template for the synthesis of telomeric repeats. In humans, the telomerase RNA (hTR) is a non-polyadenylated transcript produced from an independent transcriptional unit. As yet, the mechanism and factors responsible for hTR 3' end processing have remained largely unknown. Here, we show that hTR is matured via a polyadenylation-dependent pathway that relies on the nuclear poly(A)-binding...
Published 11/25/2015    Read More...
Here, with the aim of obtaining insight into the intriguing selectivity of G-quadruplex (G4) ligands toward cancer compared to normal cells, a genetically controlled system of progressive transformation in human BJ fibroblasts was analyzed. Among the different comparative evaluations, we found a progressive increase of DNA damage response (DDR) markers throughout the genome from normal toward immortalized and transformed cells. More interestingly, sensitivity to G4 ligands strongly correlated...
Published 01/23/2015    Read More...
This perspective review focused on the Werner syndrome (WS) by addressing the issue of how a single mutation in a WRN gene encoding WRN DNA helicase induces a wide range of premature aging phenotypes accompanied by an abnormal pattern of tumors. The key event caused by WRN gene mutation is the dysfunction of telomeres. Studies on normal aging have identified a molecular circuit in which the dysfunction of telomeres caused by cellular aging activates the TP53 gene. The resultant p53 suppresses...
Published 12/17/2013    Read More...
Dyskeratosis congenita (DC) is a rare hereditary disorder characterized by bone marrow failure, cancer predisposition (11-fold increase compared to general population), ectodermal dysplasia (nail dystrophy, oral leukoplakia, and abnormal skin pigmentation) and other additional somatic abnormalities. A 22-year-old man presented with fever, chills, and a painful throat. Leukoplakia was noted on his tongue and some of his fingers and toe nails were markedly dystrophic. His skin seemed spotted with...
Published 03/01/2015    Read More...
A remarkable observation emerging from recent cancer genome analyses is the identification of chromothripsis as a one-off genomic catastrophe, resulting in massive somatic DNA structural rearrangements (SRs). Largely due to lack of suitable model systems, the mechanistic basis of chromothripsis has remained elusive. We developed an integrative method termed "complex alterations after selection and transformation (CAST)," enabling efficient in vitro generation of complex DNA rearrangements...
Published 09/28/2015    Read More...
Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway, the senescence-associated secretory phenotype. However, cellular senescence is initiated by diverse molecular triggers, such as activated oncogenes and shortened telomeres, and is associated with varied and complex physiological endpoints, such as tumor suppression and tissue aging. The extent to which distinct triggers activate divergent modes of senescence that might be associated with different...
Published 03/20/2014    Read More...
DOK1 regulates platelet-derived growth factor (PDGF)-BB-stimulated glioma cell motility. Mechanisms regulating tumour cell motility are essential for invasion and metastasis. We report here that PDGF-BB-mediated glioma cell invasion and migration are dependent on the adaptor protein downstream of kinase 1 (DOK1). DOK1 is expressed in several glioma cell lines and in tumour biopsies from high-grade gliomas. DOK1 becomes tyrosine phosphorylated upon PDGF-BB stimulation of human glioma cells....
Published 04/24/2014    Read More...
Senescence stimuli activate multiple tumor suppressor pathways to initiate cycle arrest and a differentiation program characteristic of senescent cells. We performed a two-stage, gain-of-function screen to select for the genes whose enhanced expression can bypass replicative senescence. We uncovered multiple genes known to be involved in p53 and Rb regulation and ATM regulation, two components of the CST (CTC1-STN1-TEN1) complex involved in preventing telomere erosion, and genes such as REST and...
Published 02/02/2016    Read More...
Genome-wide association studies (GWAS) of chronic lymphocytic leukemia (CLL) have shown that common genetic variation contributes to the heritable risk of CLL. To identify additional CLL susceptibility loci, we conducted a GWAS and performed a meta-analysis with a published GWAS totaling 1,739 individuals with CLL (cases) and 5,199 controls with validation in an additional 1,144 cases and 3,151 controls. A combined analysis identified new susceptibility loci mapping to 3q26.2 (rs10936599, P =...
Published 12/01/2013    Read More...
Telomere integrity is essential to maintain genome stability, and telomeric dysfunctions are associated with cancer and aging pathologies. In human, the shelterin complex binds TTAGGG DNA repeats and provides capping to chromosome ends. Within shelterin, RAP1 is recruited through its interaction with TRF2, and TRF2 is required for telomere protection through a network of nucleic acid and protein interactions. RAP1 is one of the most conserved shelterin proteins although one unresolved question...
Published 01/08/2016    Read More...
Mutations in isocitrate dehydrogenase 1 (IDH1) have been found in the vast majority of low grade and progressive infiltrating gliomas and are characterized by the production of 2-hydroxyglutarate from α-ketoglutarate. Recent investigations of malignant gliomas have identified additional genetic and chromosomal abnormalities which cluster with IDH1 mutations into two distinct subgroups. The astrocytic subgroup was found to have frequent mutations in ATRX, TP53 and displays alternative...
Published 12/04/2014    Read More...
Cardiac angiosarcoma (CAS) is a rare malignant tumour whose genetic basis is unknown. Here we show, by whole-exome sequencing of a TP53-negative Li-Fraumeni-like (LFL) family including CAS cases, that a missense variant (p.R117C) in POT1 (protection of telomeres 1) gene is responsible for CAS. The same gene alteration is found in two other LFL families with CAS, supporting the causal effect of the identified mutation. We extend the analysis to TP53-negative LFL families with no CAS and find the...
Published 09/25/2015    Read More...
The ability to achieve sufficient restorative sleep is important in the maintenance of physical and mental health; however, disturbed sleep and insomnia symptoms are a common experience among women with breast cancer. In non-cancer populations, insufficient sleep quantity and quality has been associated with shortened telomere length (TL), a measure of accumulated cellular damage and human aging. This feasibility study compared TL in women previously diagnosed with breast cancer with clinically...
Published 10/18/2014    Read More...
Rif1 protein is present in eukaryotic cells from yeast to human. In yeast, Rif1 is important for telomere homeostasis. Despite conservation in its domain organization, human Rif1 is not part of the telomere complex but was recently reported to work at DNA double‐strand breaks (DSBs) with 53BP1 to inhibit 5′ strand degradation (resection) and stimulate a subset of nonhomologous end‐joining (NHEJ) reactions. Martina et al report in this issue of EMBO reports that yeast Rif1 is also recruited...
Published 04/27/2014    Read More...
The combined 1p-/19q- deletions in oligodendrogliomas originate from translocation between both chromosomes. In the few cases of oligoastrocytomas and glioblastomas with an oligodendroglioma component (GBMO) where only 1p deletion was described, the origin remains unknown. We report the first case of GBMO, in which a single 1p deletion was detected and was linked to a translocation between chromosomes 1 and 7. Fresh surgical specimens were collected during surgery and the samples were used for...
Published 09/30/2013    Read More...
Ku70-dependent canonical nonhomologous end-joining (c-NHEJ) DNA repair system is fundamental to the genome maintenance and B-cell lineage. c-NHEJ is upregulated and error-prone in incurable forms of chronic lymphocytic leukemia which also displays telomere dysfunction, multiple chromosomal aberrations and the resistance to DNA damage-induced apoptosis. We identify in these cells a novel DNA damage inducible form of phospho-Ku70. In vitro in different cancer cell lines, Ku70 phosphorylation...
Published 10/09/2015    Read More...
The guanine-rich sequences are able to fold into G-quadruplexes in living cells, making these structures promising anti-cancer drug targets. In the current study, we identified a small molecule, Ber8, from a series of 9-substituted berberine derivatives and found that it could induce acute cell growth arrest and senescence in cancer cells, but not in normal fibroblasts. Further analysis revealed that the cell growth arrest was directly associated with apparent cell cycle arrest, cell senescence,...
Published 11/20/2015    Read More...
Dyskeratosis congenita (DC) is an inherited disorder with mutations affecting telomerase or telomeric proteins. DC patients usually die of bone marrow failure. Here we show that genetic depletion of the telomerase RNA component (TR) in the zebrafish results in impaired myelopoiesis, despite normal development of haematopoietic stem cells (HSCs). The neutropenia caused by TR depletion is independent of telomere length and telomerase activity. Genetic analysis shows that TR modulates the...
Published 02/05/2014    Read More...
Werner Syndrome (WS) is a rare inherited disease characterized by premature aging and increased propensity for cancer. Mutations in the WRN gene can be of several types, including nonsense mutations, leading to a truncated protein form. WRN is a RecQ family member with both helicase and exonuclease activities, and it participates in several cell metabolic pathways, including DNA replication, DNA repair, and telomere maintenance. Here, we reported a novel homozygous WS mutation (c.3767 C > G) in...
Published 04/17/2015    Read More...
The identification of oncogenic driver mutations has largely relied on the assumption that genes that exhibit more mutations than expected by chance are more likely to play an active role in tumorigenesis. Major cancer sequencing initiatives have therefore focused on recurrent mutations that are more likely to be drivers. However, in specific genetic contexts, low frequency mutations may also be capable of participating in oncogenic processes. Reliable strategies for identifying these rare or...
Published 09/07/2015    Read More...
Although telomerase is an almost universal target for cancer therapy, there has been no effective telomerase targeted inhibitor that has progressed to late stage human clinical trials. Recently, we reported that a telomerase-mediated telomere-disrupting compound, 6-thio-2'-deoxyguanosine (6-thio-dG), was very effective at targeting telomerase positive cancer cells while sparing telomerase silent normal cells. 6-thio-dG, a nucleoside analogue of the already-approved drug 6-thioguanine, is...
Published 08/22/2015    Read More...
Inflammation, hormones and energy-related factors have been associated with colorectal cancer (CRC) and it has been proposed that convergence and interactions of these factors importantly influence CRC risk. We have previously hypothesized that genetic variation in the CHIEF (convergence of hormones, inflammation and energy-related factors) pathway would influence risk of CRC. In this paper, we utilize an Adaptive Rank Truncation Product (ARTP) statistical method to determine the overall pathway...
Published 10/20/2014    Read More...
Telomeres are specialized chromatin structures located at the ends of eukaryotic chromosomes, and telomere length plays a clear role in various diseases. However, it is not known whether telomere length is related to polycystic ovary syndrome (PCOS)....
Published 12/03/2013    Read More...
Glioblastoma multiforme is the most aggressive primary tumor of the central nervous system. Glioma stem cells (GSCs), a small population of tumor cells with stem-like properties, are supposedly responsible for glioblastoma multiforme relapse after current therapies. In approximately thirty percent of glioblastoma multiforme tumors, telomeres are not maintained by telomerase but through an alternative mechanism, termed alternative lengthening of telomere (ALT), suggesting potential interest in...
Published 09/11/2014    Read More...
Alterations in pathways including BRAF, CDKN2A, and TERT contribute to the development of melanoma, but the sequence in which the genetic alterations occur and their prognostic significance remains unclear. To clarify the role of these pathways, we analyzed a primary melanoma and its metastasis....
Published 12/11/2014    Read More...
Continuation or 'switch' maintenance therapy is commonly used in patients with advancd non-small-cell lung cancer (NSCLC). Here, we evaluated the efficacy of the telomerase inhibitor, imetelstat, as switch maintenance therapy in patients with advanced NSCLC....
Published 12/02/2014    Read More...
Telomere length has a biological link to cancer, with excessive telomere shortening leading to genetic instability and resultant malignant transformation. Telomere length is heritable and genetic variants determining telomere length have been identified. Telomere biology has been implicated in the development of hematological malignancies (HMs), therefore, closer examination of telomere length in HMs may provide further insight into genetic etiology of disease development and support for...
Published 10/24/2014    Read More...
The enzymatic ribonucleoprotein telomerase maintains telomeres in many eukaryotes, including humans, and plays a central role in aging and cancer. Saccharomyces cerevisiae telomerase RNA, TLC1, is a flexible scaffold that tethers telomerase holoenzyme protein subunits to the complex. Here we test the hypothesis that a lengthy conserved region of the Est1-binding TLC1 arm contributes more than simply Est1-binding function. We separated Est1 binding from potential other functions by tethering TLC1...
Published 03/03/2015    Read More...
The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous...
Published 06/10/2014    Read More...
Means to cause an immunogenic cell death could lead to significant insight into how cancer escapes immune control. In this study, we screened a library of five pyrrole-imidazole polyamides coding for different DNA sequences in a model of B-cell lymphoma for the upregulation of surface calreticulin, a pro-phagocytosis signal implicated in immunogenic cell death. We found that hairpin polyamide 1 triggers the release of the damage-associated molecular patterns calreticulin, ATP and HMGB1 in a slow...
Published 11/05/2015    Read More...
Mesenchymal stem cells (MSCs) from various animals undergo spontaneous transformation in vitro,establishing some malignant characteristics. However,this phenomenon seems seldom appearing in human (h)MSCs. To address the question whether the hMSCs really do not undergo the spontaneous transformation and why,the present study compared MSCs from two species under the same conditions, the commercialized primary hMSCs whose in vitro life span is very uniform, and the rat (r)MSCs whose spontaneous...
Published 09/25/2014    Read More...
A simple and sensitive method for measuring telomeric tandem repeat DNA and telomerase activity based on fluorescence resonance energy transfer (FRET) with a FAM-modified 12-mer ODN probe as a donor (fluorophore) and ethidium bromide (EB) as an acceptor (quencher) is proposed. When telomeric DNA and the FAM-modified probe form a duplex, EB intercalates between base-pairs, resulting in fluorescence quenching of FAM through FRET from FAM to EB. This method can be used to estimate the amount of...
Published 01/15/2014    Read More...
Prolonged culture of embryonic stem cells (ESCs) leads them to adopt embryonal carcinoma cell features, creating enormous dangers for their further application. The mechanism involved in ESC stability has not, however, been extensively studied. We previously reported that SMAD family member 3 (Smad3) has an important role in maintaining mouse ESC stability, as depletion of Smad3 results in cancer cell-like properties in ESCs and Smad3-/- ESCs are prone to grow large, malignant teratomas. To...
Published 01/08/2015    Read More...
Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is one of the most abundant RNA binding proteins. hnRNP A1 is localized prevalently in the nucleus but it can relocate to the cytoplasm in response to specific stimuli shuttling between nuclear and cytoplasmic compartments. The cellular localization of this protein is regulated by a short C-terminus motif (M9) and other less defined sequences. The RNA binding specificity of this protein is dependent on multiple RNA binding domains (RBDs),...
Published 02/14/2014    Read More...
Activation of the ERK pathway is a hallmark of cancer, and targeting of upstream signaling partners led to the development of approved drugs. Recently, SCH772984 has been shown to be a selective and potent ERK1/2 inhibitor. Here we report the structural mechanism for its remarkable selectivity. In ERK1/2, SCH772984 induces a so-far-unknown binding pocket that accommodates the piperazine-phenyl-pyrimidine decoration. This new binding pocket was created by an inactive conformation of the...
Published 09/07/2014    Read More...
AKT is a protein in the phosphatidylinositol-3 kinase (PI3K) pathway and associated with diverse pro-tumoral responses. Activation of the human telomere reverse transcriptase (hTERT) is one of AKT's tumorigenic effects. In this study, the significance of AKT phosphorylation and hTERT on prognosis of gastric cancer were examined. AKT activation by epidermal growth factor increased hTERT expression and telomerase activity. In contrast, AKT inactivation by inhibitors and knockdown decreased hTERT...
Published 08/21/2013    Read More...
The AKT protein is involved in the phosphatidylinositol-3 kinase signaling pathway and is a vital regulator of survival, proliferation and differentiation in various types of cells. Helicobacter pylori infection induces epithelial cell proliferation and oxidative stress in chronic gastritis. These alterations lead to telomere shortening, resulting in the activation of telomerase. AKT, in particular, is activated by H. pylori-induced inflammation. AKT then promotes the expression of human...
Published 05/25/2015    Read More...
Nuclear receptors bind chromosome ends in "alternative lengthening of telomeres" (ALT) cancer cells that maintain their ends by homologous recombination instead of telomerase. Marzec et al. now demonstrate that, in ALT cells, nuclear receptors not only trigger distal chromatin associations to mediate telomere-telomere recombination events, but also drive chromosome-internal targeted telomere insertions (TTI)....
Published 02/28/2015    Read More...
Activation of a telomere maintenance mechanism (TMM) is permissive for replicative immortality and a hallmark of human cancer. While most cancers rely on reactivation of telomerase, a significant fraction utilizes the recombination dependent alternative lengthening of telomeres (ALT) pathway. ALT is enriched in tumors of mesenchymal origin, including those arising from bone, soft tissue, and the nervous system, and usually portends a poor prognosis. Recent insights into the mechanisms of ALT are...
Published 12/08/2015    Read More...
Repetitive DNA sequences, such as those present in microsatellites and minisatellites, telomeres, and trinucleotide repeats (linked to fragile X syndrome, Huntington disease, etc.), account for nearly 30% of the human genome. These domains exhibit enhanced susceptibility to oxidative attack to yield base modifications, strand breaks, and abasic sites; have a propensity to adopt non-canonical DNA forms modulated by the positions of the lesions; and, when not properly processed, can contribute to...
Published 04/01/2014    Read More...
Androgen receptor (AR) plays a role in maintaining telomere stability in prostate cancer cells, as AR inactivation induces telomere dysfunction within 3 h. Since telomere dysfunction in other systems is known to activate ATM (ataxia telangiectasia mutated)-mediated DNA damage response (DDR) signaling pathways, we investigated the role of ATM-mediated DDR signaling in AR-inactivated prostate cancer cells. Indeed, the induction of telomere dysfunction in cells treated with AR-antagonists (Casodex...
Published 09/02/2015    Read More...
Downstream factors that regulate the decision between senescence and cell death have not been elucidated. Cells undergo senescence through three pathways, replicative senescence (RS), stress-induced premature senescence (SIPS) and oncogene-induced senescence. Recent studies suggest that the ataxia telangiectasia mutant (ATM) kinase is not only a key protein mediating cellular responses to DNA damage, but also regulates cellular senescence induced by telomere end exposure (in RS) or persistent...
Published 06/17/2014    Read More...
The unlimited proliferation of cancer cells requires a mechanism to prevent telomere shortening. Alternative Lengthening of Telomeres (ALT) is an homologous recombination-mediated mechanism of telomere elongation used in tumors, including osteosarcomas, soft tissue sarcoma subtypes, and glial brain tumors. Mutations in the ATRX/DAXX chromatin remodeling complex have been reported in tumors and cell lines that use the ALT mechanism, suggesting that ATRX may be an ALT repressor. We show here that...
Published 07/23/2015    Read More...
Excessive telomere shortening is observed in breast cancer lesions when compared to adjacent non-cancerous tissues, suggesting that telomere length may represent a key biomarker for early cancer detection. Because tumor-derived, cell-free DNA (cfDNA) is often released from cancer cells and circulates in the bloodstream, we hypothesized that breast cancer development is associated with changes in the amount of telomeric cfDNA that can be detected in the plasma. To test this hypothesis, we devised...
Published 10/16/2015    Read More...
Maintenance of telomere length is a critical hallmark of malignant transformation. While silenced in somatic cells, telomerase reverse transcriptase (TERT), the catalytic subunit of telomerase, is frequently overexpressed in malignant cells thereby maintaining their telomere length. Specific point mutations in the TERT promoter region have recently been identified in melanoma and other tumor entities resulting in high TERT expression. Neuroblastoma is the most common extracranial tumor of...
Published 05/13/2015    Read More...
Telomere length (TL) is currently used as an emerging biomarker in understanding the development/progression of hematological malignancies. The absolute quantitative PCR (qPCR) methodology has allowed the study of TL from a variety of mammalian tissues, but it has not been tested for bone marrow (BM) samples. In this study, we have examined the relationship between TL data generated by absolute qPCR versus those obtained by terminal restriction fragments (TRF) in 102 BM samples from patients...
Published 01/20/2015    Read More...
Neoadjuvant cisplatin-based chemotherapy is standard of care for muscle-invasive bladder cancer (MIBC); however, it is infrequently adopted in practice because of concerns regarding toxicity and delay to cystectomy. We hypothesized that three cycles of neoadjuvant accelerated methotrexate, vinblastine, doxorubicin, and cisplatin (AMVAC) would be safe, shorten the time to surgery, and yield similar pathologic complete response (pT0) rates compared with historical controls....
Published 05/12/2014    Read More...
Mantle cell lymphoma (MCL) is an aggressive lymphoid neoplasm with poor prognosis. Acquired telomerase reverse transcriptase gene promoter (TERTp) mutations are among the most frequent somatic non-coding mutations in cancers. In this study, we investigated the prevalence of TERTp mutations in 24 MCL and 21 other lymphoid neoplasias (oLN). Eight MCL samples (33%) carried TERTp mutations, two homozygous and six heterozygous (seven C228T and one C250T), which directly correlated with higher TERT...
Published 02/06/2016    Read More...
Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines....
Published 03/29/2014    Read More...
Telomeres are specialized nucleoprotein structures that protect chromosomal ends from degradation. These structures progressively shorten during cellular division and can signal replicative senescence below a critical length. Telomere length is predominantly maintained by the enzyme telomerase. Significant decreases in telomere length and telomerase activity are associated with a host of chronic diseases; conversely their maintenance underpins the optimal function of the adaptive immune system....
Published 04/21/2014    Read More...
During recent years, it has become increasingly evident that donor leukemia following allogeneic transplant may be more common then realized in the past. We identified five cases of potential donor leukemia cases during past five years. The precise mechanism of the origin of such leukemias, however, remains poorly defined. In this short communication, we report a well documented case of donor-derived de novo acute myeloid leukemia (AML) that developed fourteen years after allogeneic stem cell...
Published 05/20/2014    Read More...
Telomeric DNA has been intensely investigated for its role in chromosome protection, aging, cell death, and disease. In humans the telomeric tandem repeat (TTAGGG)n is found at the ends of chromosomes and provides a novel target for the development of new drugs in the treatment of age related diseases such as cancer. These telomeric sequences show slight sequence variations from species to species; however, each contains repeats of 3 to 4 guanines allowing the G-rich strands to fold into compact...
Published 02/21/2014    Read More...
Telomerases are an attractive drug target to develop new generation drugs against cancer. A telomere appears from the chromosomal termini and protects it from double-stranded DNA degradation. A short telomere promotes genomic instability, like end-to-end fusion and regulates the over-expression of the telomere repairing enzyme, telomerase. The telomerase maintains the telomere length, which may lead to genetically abnormal situations, leading to cancer. Thus, the design and synthesis of an...
Published 04/03/2014    Read More...
The aged liver is more sensitive to the drug treatments and has a high probability of developing liver disorders such as fibrosis, cirrhosis, and cancer. Here we present mechanisms underlying age-associated severe liver injury and acceleration of liver proliferation after CCl4 treatments. We have examined liver response to CCl4 treatments using old WT mice and young C/EBPα-S193D knockin mice, which express an aged-like isoform of C/EBPα. Both animal models have altered chromatin structure as...
Published 11/22/2013    Read More...
Telomeres are essential in maintaining chromosome integrity and in controlling cellular replication. Attrition of telomere length in peripheral blood mononuclear cells (PBMCs) with age is well documented from cross-sectional studies. But the actual in vivo changes in telomere lengths and its relationship with the contributing factors within the individuals with age have not been fully addressed. In the present paper, we report a longitudinal analysis of telomere length in the PBMCs, lymphocytes...
Published 12/03/2014    Read More...
Telomeres are the heterochromatic repeat regions at the ends of eukaryotic chromosomes, whose length is considered to be a determinant of biological ageing. Normal ageing itself is associated with telomere shortening. Here, critically short telomeres trigger senescence and eventually cell death. This shortening rate may be further increased by inflammation and oxidative stress and thus affect the ageing process. Apart from shortened or dysfunctional telomeres, cells undergoing senescence are...
Published 11/23/2015    Read More...
Aging is characterized by a decrease in genome integrity, impaired organ maintenance, and an increased risk of cancer, which coincide with clonal dominance of expanded mutant stem and progenitor cell populations in aging tissues, such as the intestinal epithelium, the hematopoietic system, and the male germline. Here we discuss possible explanations for age-associated increases in the initiation and/or progression of mutant stem/progenitor clones and highlight the roles of stem cell quiescence,...
Published 06/06/2015    Read More...
Ligand-stabilized human telomeric G-quadruplex DNA is believed to be an anticancer agent, as it can impede the continuous elongation of telomeres by telomerase in cancer cells. In this study, five well-established human telomeric G-quadruplex DNA models were probed on their binding behaviors with thioflavin T (ThT) via both conventional molecular dynamics (MD) and well-tempered metadynamics (WT-MetaD) simulations. Novel dynamics and characteristic binding patterns were disclosed by the MD...
Published 04/06/2015    Read More...
Exposure to benzene, a known leukemogen and probable lymphomagen, has been demonstrated to result in oxidative stress, which has previously been associated with altered telomere length (TL). TL specifically has been associated with several health outcomes in epidemiologic studies, including cancer risk, and has been demonstrated to be altered following exposure to a variety of chemical agents. To evaluate the association between benzene exposure and TL, we measured TL by monochrome multiplex...
Published 06/19/2014    Read More...
Working as hairdressers has been associated with increased risk for cancer, particularly bladder cancer. To evaluate if current hairdressers have elevated risks of adverse health effects, we measured several biomarkers related to cancer-related DNA alterations. We enrolled 295 hairdressers and 92 non-hairdressers (all female non-smokers) from Stockholm and southern Sweden. Questionnaire data were collected for each participant, including work tasks for the hairdressers. We measured telomere...
Published 12/06/2015    Read More...
The Suv39h1 and Suv39h2 H3K9 histone methyltransferases (HMTs) have a conserved role in the formation of constitutive heterochromatin and gene silencing. Using a transgenic mouse model system we demonstrate that elevated expression of Suv39h1 increases global H3K9me3 levels in vivo. More specifically, Suv39h1 overexpression enhances the imposition of H3K9me3 levels at constitutive heterochromatin at telomeric and major satellite repeats in primary mouse embryonic fibroblasts. Chromatin...
Published 05/01/2015    Read More...
Proper telomeric chromatin configuration is thought to be essential for telomere homeostasis and stability. Previous studies in mouse suggested that loss of heterochromatin marks at telomeres might favor onset of Alternative Lengthening of Telomeres (ALT) pathway, by promoting homologous recombination. However, analysis of chromatin status at human ALT telomeres has never been reported. Here, using isogenic human cell lines and cellular hybrids, which rely either on telomerase or ALT to maintain...
Published 02/05/2014    Read More...
To cope with DNA double strand break (DSB) genotoxicity, cells have evolved two main repair pathways: homologous recombination which uses homologous DNA sequences as repair templates, and non-homologous Ku-dependent end-joining involving direct sealing of DSB ends by DNA ligase IV (Lig4). During the last two decades a third player most commonly named alternative end-joining (A-EJ) has emerged, which is defined as any Ku- or Lig4-independent end-joining process. A-EJ increasingly appears as a...
Published 03/06/2014    Read More...
Chromosome ends are protected by telomeres that prevent DNA damage response and degradation. Telomerase expression extends telomeres and inhibits DNA damage response. Telomeres are also maintained by the recombination-based alternative lengthening pathway. Telomerase is believed to be the sole mechanism for telomere maintenance in the epidermis. We show that basal cells in the epidermis maintain telomeres both by telomerase and alternative lengthening of telomere (ALT) mechanisms in vivo. ALT...
Published 02/17/2014    Read More...
Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere length maintenance mechanism that enables the unlimited proliferation of a subset of cancer cells. Some neuroblastoma (NB) tumors appear to maintain telomere length by activating ALT. Of 40 NB cell lines, we identified four potential ALT cell lines (CHLA-90, SK-N-FI, LA-N-6, and COG-N-291) that were telomerase-negative and had long telomeres (a feature of ALT cells). All four cell lines lacked MYCN amplification and...
Published 05/03/2014    Read More...
Although telomeres are maintained in most cancers by telomerase activation, a subset of tumors utilize alternative lengthening of telomeres (ALT) to sustain self-renewal capacity. In order to study the prevalence and significance of ALT in childhood brain tumors we screened 517 pediatric brain tumors using the novel C-circle assay. We examined the association of ALT with alterations in genes found to segregate with specific histological phenotypes and with clinical outcome. ALT was detected...
Published 10/15/2014    Read More...
Alternative lengthening of telomeres (ALT) is a mechanism using homologous recombination to maintain telomere length and sustain limitless replicability of cancer cells. Recently, ALT has been found to be associated with inactivation of either α-thalassemia/mental retardation syndrome X-linked (ATRX) or death domain-associated (DAXX) protein. In this study, 119 tumors (88 angiosarcomas, 11 epithelioid hemangioendotheliomas, and 20 Kaposi sarcomas) were analyzed to determine the ALT status, its...
Published 06/05/2015    Read More...
The determination of the primary tumor origin in patients with neuroendocrine tumor liver metastases (NELM) can pose a considerable management challenge. Recent studies have shown that the alternative lengthening of telomeres (ALT) is prevalent in some human tumors, including pancreatic neuroendocrine tumors (PanNET), and can be useful in predicting tumor biology. In this study, we aimed to evaluate the use of ALT as a biomarker in patients with NELM, in particular to predict the site of origin...
Published 01/10/2014    Read More...
Cancer cells rely on telomerase or the alternative lengthening of telomeres (ALT) pathway to overcome replicative mortality. ALT is mediated by recombination and is prevalent in a subset of human cancers, yet whether it can be exploited therapeutically remains unknown. Loss of the chromatin-remodeling protein ATRX associates with ALT in cancers. Here, we show that ATRX loss compromises cell-cycle regulation of the telomeric noncoding RNA TERRA and leads to persistent association of replication...
Published 01/16/2015    Read More...
Alternative splicing affects approximately 95% of eukaryotic genes, greatly expanding the coding capacity of complex genomes. Although our understanding of alternative splicing has increased rapidly, current knowledge of splicing regulation has largely been derived from studies of highly expressed mRNAs. Telomerase is a key example of a protein that is alternatively spliced, but it is expressed at very low levels and although it is known that misregulation of telomerase splicing is a hallmark of...
Published 08/26/2014    Read More...
The development of sensitive telomerase biosensors is hindered by the restricted accessibility of telomere strand (TS) primer and the limited enzyme reaction space, which is mainly confined by the vertical distance. In this work, we designed an electrochemical telomerase biosensor based on a spired DNA tetrahedron TS primer (STTS). By adding a rigid dsDNA spire onto the top of the DNA tetrahedron, we successfully regulated the distance between the TS primer and the surface, and thus greatly...
Published 08/27/2014    Read More...
Telomeres are guanosine-rich nucleic-acid chains that fold, in the presence of K(+) ions and hemin, into the telomeric hemin/G-quadruplex structure, exhibiting horseradish peroxidase mimicking functions. The telomeric hemin/G-quadruplex structures catalyze the oxidation of thiols (e.g., l-cysteine) into disulfides (e.g., cystine). As l-cysteine stimulates the aggregation of Au nanoparticles (NPs), accompanied by absorbance changes from red (individual Au NPs) to blue (aggregated Au NPs), the...
Published 02/25/2014    Read More...
Lamellarin D (LamD) is a marine alkaloid with broad spectrum antitumor activities. Multiple intracellular targets of LamD, which affect cancer cell growth and induce apoptosis, have been identified. These include nuclear topoisomerase I, relevant kinases (such as cyclin-dependent kinase 2) and the mitochondrial electron transport chain. While we have previously demonstrated that LamD at micromolar range deploys strong cytotoxicity by inducing mitochondrial apoptosis, mechanisms of its cytostatic...
Published 01/27/2014    Read More...
Ubiquitin, and components of the ubiquitin-proteasome system, feature extensively in the regulation of gene transcription. Although there are many examples of how ubiquitin controls the activity of transcriptional regulators and coregulators, there are few examples of core components of the transcriptional machinery that are directly controlled by ubiquitin-dependent processes. The budding yeast protein Asr1 is the prototypical member of the RPC (RING, PHD, CBD) family of ubiquitin-ligases,...
Published 01/19/2016    Read More...
Sodium metaarsenite (NaAs2O3: code name KML001) is an orally bioavailable arsenic compound with potential anti-cancer activity. However, the effect of KML001 has not been studied in acute myeloid leukemia (AML). We investigated the anti-leukemic effect of KML001 in AML, and determined the mode of action of KML001. KML001 inhibited the cellular proliferation in all AML cell lines and primary AML blasts as well as HL-60R (cytosine arabinoside-resistant HL-60) cells, while As2O3 was not effective...
Published 02/17/2015    Read More...
Arsenic compounds have been used in traditional medicine for several centuries. KML001 (sodium metaarsenite; NaAsO2) is an orally bio-available arsenic compound with potential anti-cancer activity. However, the effect of KML001 has not been studied in lymphoid neoplasms. The aim of this study is to evaluate the anti-proliferative effect of KML001 in non-Hodgkin's lymphoma and to compare its efficacy with As2O3. KML001 inhibited cellular proliferation in all tested lymphoma cell lines as well as...
Published 11/18/2015    Read More...
A new Ru(II)-Se complex, Ru(bpy)2L2Cl2 (bpy = 2,2'-bipyridine, L = 1,10-phenanthrolineselenazole) (Ru-Se) has been synthesized and characterized. The G-quadruplex DNA-binding properties of the complex and its selenium ligand (Phen-Se) were evaluated by thermal denaturation study, polymerase chain reaction (PCR) stop assay, and telomerase repeat amplification protocol (TRAP). The results showed that the obtained complex could induce and stabilize G-quadruplex structure as well as exhibit...
Published 01/11/2014    Read More...
Cancer cells are often immortal through up-regulation of the hTERT gene, which encodes the catalytic subunit of a special reverse transcriptase to overcome end-replication problem of chromosomes. This study demonstrates that papaverine, an isoquinoline alkaloid from the Papaveraceae, can overcome telomerase dependent immortality of HepG-2 cells that was used as a model of hepatocarcinoma. Although this alkaloid does not directly interact with telomeric sequences, papaverine inhibits telomerase...
Published 08/08/2014    Read More...
Nasopharyngeal carcinoma (NPC) is associated with a high incidence rate in South China and is predominantly treated with radiotherapy; however, the survival rate remains low. The therapeutic effects of radiation and chemotherapy may be enhanced when combined with anti‑sense oligonucleotides targeting human telomerase RNA (hTR ASODN). However, the influence of hTR ASODN on the anti‑tumor effects of radiation in NPC remain unknown. The present study investigated the effects of hTR ASODN on the...
Published 12/17/2014    Read More...
Molecular epidemiology is the study of genetic and environmental risk for disease, with much effort centered on cancer. Childhood leukemia occurs in nearly a third of all patients newly diagnosed with pediatric cancer. only a small percentage of these new cases of childhood leukemia are associated with high penetrant hereditary cancer syndromes. Childhood leukemia, especially acute lymphoblastic leukemia, has been associated with a dysregulated immune system due to delayed infectious exposure at...
Published 01/11/2016    Read More...
Exposure to radiation and some chemotherapeutic agents is associated with an increased risk of developing second cancers. Short telomeres are almost universally associated with malignant cancer progression. An unanswered question is whether inherited short telomeres or therapy-related telomere shortening is a biomarker of the development of second malignant neoplasms....
Published 12/23/2013    Read More...
Arsenic (As) induces pre-malignant and malignant dermatological lesions, non-dermatological health effects and cancers in humans. Senescence involves telomere length changes and acquisition of senescence-associated secretory phenotype (SASP), which promotes carcinogenesis. Though in vitro studies have shown that As induces senescence, population based studies are lacking. We investigated the arsenic-induced senescence, telomere length alteration and its contribution towards development of...
Published 03/24/2014    Read More...
Inorganic arsenic is a carcinogen whose mode of action may involve telomere dysfunction. Recent epidemiological studies suggest that chronic arsenic exposure is associated with longer telomeres and altered expression of telomere-related genes in peripheral blood. In this study, we evaluated the association of urinary arsenic concentration with expression of telomere-related genes and telomere length in Bangladeshi individuals with a wide range of arsenic exposure through naturally contaminated...
Published 11/25/2014    Read More...
Acute promyelocytic leukemia (APL) is largely caused by the t(15,17) chromosome translocation, leading to the production of the PML/retinoic acid receptor alpha fusion. All-trans retinoic acid (ATRA) and arsenic trioxide (ATO), as a monotherapy or combination therapy, have been successfully used to treat APL primarily by targeting the degradation of the fusion protein. We previously observed that ATO treatment induced cell death in APL cell line HL-60 accompanied by inhibition of the human...
Published 11/28/2014    Read More...
Circumvention of the telomere length-dependent mechanisms that control the upper boundaries of cellular proliferation is necessary for the unlimited growth of cancer. Most cancer cells achieve cellular immortality by up-regulating the expression of telomerase to extend and maintain their telomere length. However, a small but significant number of cancers do so via the exchange of telomeric DNA between chromosomes in a pathway termed alternative lengthening of telomeres, or ALT. Although it...
Published 08/26/2014    Read More...
Telomere length can provide valuable insight into telomeres and telomerase related diseases, including cancer. Here, we present a brand-new optical telomere length measurement protocol using surface enhanced Raman scattering (SERS). In this protocol, two single strand DNA are used as SERS probes. They are labeled with two different Raman molecules and can specifically hybridize with telomeres and centromere, respectively. First, genome DNA is extracted from cells. Then the telomere and...
Published 11/10/2014    Read More...
Naphthalene diimide (NDI) derivatives have shown high affinity for telomeric guanine (G)‑quadruplexes and good antiproliferative activity in different human tumor experimental models. A trisubstituted compound (H‑NDI‑NMe2) has been reported to stabilize the telomeric G‑quadruplex and to cause telomere dysfunction and downregulation of telomerase expression. We further investigated its mechanism of action by analyzing the capability of the molecule to interfere with the expression...
Published 10/23/2014    Read More...
To identify potential biomarkers that may provide new therapeutic targets or prognostic indicators for non-small cell lung cancer (NSCLC), we investigated the three-dimensional (3D) organization of telomeres and cytoband 17q25.3 copy number in NSCLC tissues....
Published 11/30/2015    Read More...
Leukocyte telomere length (LTL) and plasma homocysteine (HCY) have been independently associated with cardiovascular disease (CVD) morbidity and mortality. However, few studies have investigated the association between LTL and HCY levels....
Published 05/20/2015    Read More...
Telomere biology plays a critical and complex role in the initiation and progression of cancer. Several recent studies have provided evidence that rs401681 polymorphisms in intronic region of cleft lip and palate trans-membrane 1-like (CLPTM1L) gene sequence are associated with pancreatic cancer (PC) development, but a comprehensive synopsis is not available. We performed a meta-analysis of 6 case-control studies that included 8,253 pancreatic cancer cases and 37,646 case-free controls. We...
Published 10/05/2014    Read More...
The 5p15.33 locus has been recently identified to associate with multiple cancer types including lung, urinary bladder, prostate, and cervical cancer, based on its critical role in the maintenance of telomere, chromosome stability, and ultimately preventing normal cell malignance. TERT (human telomerase reverse transcriptase) is an attractive candidate gene for the 5p15.33 locus. Recently, a number of case-control studies have been carried out to investigate the relationship between the...
Published 01/04/2014    Read More...
Telomeres protect chromosome ends and are markers of cellular aging and replicative capacity....
Published 02/11/2015    Read More...
Compelling epidemiological evidence indicates that alterations of telomere length are associated with risks of many malignancies in a tumor-specific manner, such as lung cancer, breast cancer, and non-Hodgkin's lymphoma. However, the association between leukocyte telomere length and glioma risk has not been investigated....
Published 12/22/2013    Read More...
Authors: Cecil C. Chen, Ciaran C. Upton, Nady N. Braidy, Jinan J. Khalil, Zhi-Ming ZM. Fang, Ying-Hua YH. Xu, Daniel K Y DK. Chan Published: 07/21/2014, Journal of the American Geriatrics Society PubMed Full Text...
Published 07/21/2014    Read More...
Telomerase reverse transcriptase (TERT), encoded by the TERT gene, is an essential component of telomerase, essential for the maintenance of telomere DNA length, chromosomal stability and cellular immortality. The aim of the present study was to evaluate the association between common genetic variations across the TERT gene region and prostate cancer (PCa) aggressiveness in a Chinese population. A total of 12 TERT tagging single-nucleotide polymorphisms (SNPs) were genotyped on the Sequenom...
Published 03/04/2015    Read More...
Fanconi anemia (FA) is a rare recessive disorder associated with chromosomal fragility. FA patients are at very high risk of cancers, especially head and neck squamous cell carcinomas and squamous cell carcinomas caused by infection of human papillomaviruses (HPVs). By integrating into the host genome, HPV oncogenes E6 and E7 drive the genomic instability to promote DNA damage and gene mutations necessary for carcinogenesis in FA patients. Furthermore, E6 and E7 oncoproteins not only inhibit p53...
Published 03/17/2015    Read More...
Telomeres are the protective structure at the ends of each chromosome and play an important role in maintaining genomic integrity. Interindividual variation of telomere length in peripheral blood leukocytes has been associated with the risks of developing many human diseases including several cancers. The association between leukocyte telomere length (LTL) and endometrial cancer risk is still inconsistent. Using a case-control study of endometrial cancer patients (n = 139) and control subjects...
Published 09/18/2015    Read More...
Cellular aging plays a role in longevity and senescence, and has been implicated in medical and psychiatric conditions, including heart disease, cancer, major depression and posttraumatic stress disorder. Telomere shortening and mitochondrial dysfunction are thought to be central to the cellular aging process. The present study examined the association between mitochondrial DNA (mtDNA) copy number and telomere length in a sample of medically healthy adults. Participants (total n=392) were...
Published 04/03/2015    Read More...
Associations between the rs6010620 polymorphism in the regulator of telomere elongation helicase1 (RTEL1) gene and glioma have been widely reported but the results were not inconclusive. The aim of the current study was to investigate the association between the rs6010620 polymorphism in RTEL1 gene and risk of glioma by meta-analysis....
Published 09/17/2014    Read More...
The replication time of Saccharomyces cerevisiae telomeres responds to TG1-3 repeat length, with telomeres of normal length replicating late during S phase and short telomeres replicating early. Here we show that Tel1 kinase, which is recruited to short telomeres, specifies their early replication, because we find a tel1Δ mutant has short telomeres that nonetheless replicate late. Consistent with a role for Tel1 in driving early telomere replication, initiation at a replication origin close to...
Published 10/16/2014    Read More...
In this study, we analyzed 100 cases of renal cell carcinoma (RCC) for telomerase activity, telomere length and alternative lengthening of telomeres (ALT) using the TRAP assay, TeloTTAGGG assay kit and immunohistochemical analysis of ALT associated promyelocytic leukemia (PML) bodies respectively. A significantly higher (P=0.000) telomerase activity was observed in 81 cases of RCC which was correlated with clinicopathological features of tumor for instance, stage (P=0.008) and grades (P=0.000)...
Published 03/11/2015    Read More...
The segregation of centromeres and telomeres at mitosis is coordinated at multiple levels to prevent the formation of aneuploid cells, a phenotype frequently observed in cancer. Mitotic instability arises from chromosome segregation defects, giving rise to chromatin bridges at anaphase. Most of these defects are corrected before anaphase onset by a mechanism involving Aurora B kinase, a key regulator of mitosis in a wide range of organisms. Here, we describe a new role for Aurora B in telomere...
Published 03/17/2015    Read More...
Telomere dysfunction plays a complex role in tumorigenesis. While dysfunctional telomeres can block the proliferation of incipient cancer clones by inducing replicative senescence, fusion of dysfunctional telomeres can drive genome instability and oncogenic genomic rearrangements. Therefore, it is important to define the regulatory pathways that guide these opposing effects. Recent work has shown that the autophagy pathway regulates both senescence and genome instability in various contexts....
Published 04/23/2015    Read More...
To uncover the genetic events leading to transformation of pediatric low-grade glioma (PLGG) to secondary high-grade glioma (sHGG)....
Published 02/09/2015    Read More...
Loss of telomere protection occurs during physiological cell senescence and ageing, due to attrition of telomeric repeats and insufficient retention of the telomere-binding factor TRF2. Subsequently formed telomere fusions trigger rampant genomic instability leading to cell death or tumorigenesis. Mechanistically, telomere fusions require either the classical non-homologous end-joining (C-NHEJ) pathway dependent on Ku70/80 and LIG4, or the alternative non-homologous end-joining (A-NHEJ), which...
Published 01/12/2015    Read More...
BRCA1 mutation is associated with carcinogenesis, especially of breast tissue. Telomere maintenance is crucial for malignant transformation. Being a part of the DNA repair machinery, BRCA1 may be implicated in telomere biology. We explored the role of BRCA1 in telomere maintenance in lymphocytes of BRCA1/2 mutation carriers and in in vitro system by knocking down its expression in non-malignant breast epithelial cells.The results in both systems were similar. BRCA1/2 mutation caused perturbation...
Published 02/16/2016    Read More...
Stem cells are endowed with the awesome power of self-renewal and multi-lineage differentiation that allows them to be major contributors to tissue homeostasis. Owing to their longevity and self-renewal capacity, they are also faced with a higher risk of genomic damage compared to differentiated cells. Damage on the genome, if not prevented or repaired properly, will threaten the survival of stem cells and culminate in organ failure, premature aging, or cancer formation. It is therefore of...
Published 02/17/2016    Read More...
During DNA replication, the enzyme telomerase maintains the ends of chromosomes, called telomeres. Shortened telomeres trigger cell senescence, and cancer cells often have increased telomerase activity to promote their ability to proliferate indefinitely. The catalytic subunit, human telomerase reverse transcriptase (hTERT), is stabilized by phosphorylation. We found that the lysophospholipid sphingosine 1-phosphate (S1P), generated by sphingosine kinase 2 (SK2), bound hTERT at the nuclear...
Published 06/16/2015    Read More...
Older cancer patients are a highly heterogeneous population in terms of global health and physiological reserves, and it is often difficult to determine the best treatment. Moreover, clinical tools currently used to assess global health require dedicated time and lack a standardized end score. Circulating markers of biological age and/or fitness could complement or partially substitute the existing screening tools. In this study we explored the relationship of potential ageing/frailty biomarkers...
Published 07/09/2015    Read More...
The most difficult thyroid tumors to diagnose by histology are follicular carcinomas (FTCs) and Hürthle cell carcinomas (HCCs). Telomere alteration and human telomerase reverse transcriptase (hTERT) expression have been observed in most human cancers and are known to be a feature of malignancy. The purpose of this study was to clarify whether hTERT protein expression and telomere alteration could be applicable biological markers for distinguishing FTC from HCC....
Published 02/22/2014    Read More...
Over the last 50 years, major improvements have been made in our understanding of the driving forces, both parallel and opposing, that lead to aging and cancer. Many theories on aging first proposed in the 1950s, including those associated with telomere biology, senescence, and adult stem-cell regulation, have since gained support from cumulative experimental evidence. These views suggest that the accumulation of mutations might be a common driver of both aging and cancer. Moreover, some tumor...
Published 12/02/2014    Read More...
Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double-stranded breaks. In addition, telomeres are replicated by a special reverse transcriptase called telomerase, in a complex mechanism that is coordinated with the genome's replication. Telomeres also play an important...
Published 04/21/2014    Read More...
Human ageing is associated with a gradual decline in the physiological functions of the body at multiple levels and it is a key risk factor for many diseases, including cancer. Ageing process is intimately related to widespread cellular senescence, characterised by an irreversible loss of proliferative capacity and altered functioning associated with telomere attrition, accumulation of DNA damage and compromised mitochondrial and metabolic function. Tumour and senescent cells may be generated in...
Published 04/04/2015    Read More...
Mature adipocytes have shown dynamic plasticity to be converted into fibroblast-like and lipid-free cells. After the dedifferentiation process, these cells re-entered the cell cycle and acquired a high proliferation potential, becoming a valid source of stem cells. However, many aspects of the cellular biosafety about dedifferentiated fat cells remained unclear. This study aimed to elucidate their potential susceptibility to malignant transformation and to ascertain the safety of these cells for...
Published 03/30/2015    Read More...
Accelerated telomere shortening may cause cancer via chromosomal instability, making it a potentially useful biomarker. However, publications on blood telomere length (BTL) and cancer are inconsistent. We prospectively examined BTL measures over time and cancer incidence....
Published 04/13/2015    Read More...
Telomere length (TL) has been proposed as a biomarker of ageing, which might be used to identify individuals at higher risk of age-related diseases. Obesity is a well-known risk factor for several diseases. This study aims to analyse the associations of BMI with TL and the rate of TL change in older adults....
Published 11/30/2015    Read More...
The objective of this study was to provide a systematic review and meta-analysis of studies on the relationship between body mass index (BMI) and leukocyte telomere length (LTL). Relevant studies were identified by a systematic search of MEDLINE, Embase and Web of Knowledge databases. Pooled correlation and regression coefficients were calculated using meta-analysis methods for both cross-sectional and longitudinal studies. Studies without suitable data for meta-analysis were summarized...
Published 10/25/2013    Read More...
In a preliminary screening study of natural alkaloids, boldine, an aporphine alkaloid, showed an interesting dose and time dependent anti-proliferative effect in several cancer cell lines. Cytotoxicity of boldine in human fibroblasts was considerably lower than the telomerase positive embryonic kidney HEK293 and breast cancer MCF-7 and MDA-MB-231 cells. Whether boldine can inhibit telomerase was investigated here using a modified quantitative real-time telomere repeat amplification protocol...
Published 03/03/2015    Read More...
Our understanding of the pathophysiology of aplastic anemia is undergoing significant revision, with implications for diagnosis and treatment. Constitutional and acquired disease is poorly delineated, as lesions in some genetic pathways cause stereotypical childhood syndromes and also act as risk factors for clinical manifestations in adult life. Telomere diseases are a prominent example of this relationship. Accelerated telomere attrition is the result of mutations in telomere repair genes and...
Published 09/18/2014    Read More...
Dyskeratosis congenita (DC) is an inherited multisystem disorder, characterized by oral leukoplakia, nail dystrophy, and abnormal skin pigmentation, as well as high rates of bone marrow (BM) failure, solid tumors, and other medical problems such as osteopenia. DC and telomere biology disorders (collectively referred to as TBD here) are caused by germline mutations in telomere biology genes leading to very short telomeres and limited proliferative potential of hematopoietic stem cells. We found...
Published 12/12/2014    Read More...
Bortezomib inhibits the ubiquitin/proteasome pathway to achieve its anti-cancer effect and its well characterized activity is the NF-κB inhibition through which the anti-apoptotic bcl-2 expression is down-regulated and apoptosis is subsequently induced. However, the downstream molecular targets of bortezomib are still incompletely defined. Because telomere stabilization via activation of telomerase, induction of telomerase reverse transcriptase (hTERT) and appropriate expression of shelterin...
Published 11/26/2015    Read More...
Despite the fact that telomeres carry chromatin marks typically associated with silent heterochromatin, they are actively transcribed into TElomeric Repeat containing RNA (TERRA). TERRA transcription is conserved from yeast to man, initiates in the subtelomeric region and proceeds through the telomeric tract of presumably each individual telomere. TERRA levels are increased in yeast survivors and in cancer cells employing ALT as a telomere maintenance mechanism (TMM). Thus, TERRA may be a...
Published 04/01/2014    Read More...
Breast cancer is the most common malignant disease in women, but some basic questions remain in breast cancer biology. To answer these, several cell models were developed. Recently, the use of improved cell-culture conditions has enabled the development of a new primary cell model with certain luminal characteristics. This model is relevant because, after the introduction of a specific set of genetic elements, the transformed cells yielded tumors resembling human adenocarcinomas in mice. The use...
Published 01/13/2016    Read More...
Mutation is associated with developmental and hereditary disorders, aging, and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. We used Caenorhabditis elegans whole-genome sequencing to model mutational signatures, analyzing 183 worm populations across 17 DNA repair-deficient backgrounds propagated for 20 generations or exposed to carcinogens. The baseline mutation rate in C. elegans was approximately one per genome per generation, not...
Published 07/16/2014    Read More...
The shelterin proteins are required for telomere integrity. Shelterin dysfunction can lead to initiation of unwarranted DNA damage and repair pathways at chromosomal termini. Interestingly, many shelterin accessory proteins are involved in DNA damage signaling and repair. We demonstrate here that in normal human fibroblasts, telomeric ends are protected by phosphorylation of CGG triplet repeat-binding protein 1 (CGGBP1) at serine 164 (S164). We show that serine 164 is a major phosphorylation...
Published 10/23/2013    Read More...
Human ALT cancers show high mutation rates in ATRX and DAXX. Although it is well known that the absence of ATRX/DAXX disrupts H3.3 deposition at heterochromatin, its impact on H3.3 deposition and post-translational modification in the global genome remains unclear. Here, we explore the dynamics of phosphorylated H3.3 serine 31 (H3.3S31ph) in human ALT cancer cells. While H3.3S31ph is found only at pericentric satellite DNA repeats during mitosis in most somatic human cells, a high level of...
Published 02/17/2015    Read More...
Melanoma has traditionally been viewed as a radioresistant cancer. However, recent studies suggest that under certain clinical circumstances, radiotherapy may play a significant role in the treatment of melanoma. Previous studies have demonstrated that telomere length is a hallmark of radiosensitivity. The newly discovered mammalian CTC1‑STN1-TEN1 (CST) complex has been demonstrated to be an important telomere maintenance factor. In this study, by establishing a radiosensitive/radioresistant...
Published 04/02/2014    Read More...
Cancer up-regulated drug resistant (CUDR) is a novel non-coding RNA gene. Herein, we demonstrate excessive CUDR cooperates with excessive CyclinD1 or PTEN depletion to accelerate liver cancer stem cells growth and liver stem cell malignant transformation in vitro and in vivo. Mechanistically, we reveal the decrease of PTEN in cells may lead to increase binding capacity of CUDR to CyclinD1. Therefore, CUDR-CyclinD1 complex loads onto the long noncoding RNA H19 promoter region that may lead to...
Published 12/17/2015    Read More...
Mutations in the human telomerase reverse transcriptase (TERT) promoter are the most frequent non-coding mutations in cancer, but their molecular mechanism in tumorigenesis has not been established. We used genome editing of human pluripotent stem cells with physiological telomerase expression to elucidate the mechanism by which these mutations contribute to human disease. Surprisingly, telomerase-expressing embryonic stem cells engineered to carry any of the three most frequent TERT promoter...
Published 07/21/2015    Read More...
Reactivation of telomerase, the chromosome end-replicating enzyme, drives human cell immortality and cancer. Point mutations in the telomerase reverse transcriptase (TERT) gene promoter occur at high frequency in multiple cancers, including urothelial cancer (UC), but their effect on telomerase function has been unclear. In a study of 23 human UC cell lines, we show that these promoter mutations correlate with higher levels of TERT messenger RNA (mRNA), TERT protein, telomerase enzymatic...
Published 02/05/2015    Read More...
Break-induced replication (BIR) is a mechanism to repair double-strand breaks (DSBs) that possess only a single end that can find homology in the genome. This situation can result from the collapse of replication forks or telomere erosion. BIR frequently produces various genetic instabilities including mutations, loss of heterozygosity, deletions, duplications, and template switching that can result in copy-number variations (CNVs). An important type of genomic rearrangement specifically linked...
Published 02/27/2014    Read More...
The maintenance of human telomeres requires the ribonucleoprotein enzyme telomerase, which is composed of telomerase reverse transcriptase (TERT), telomerase RNA component, and several additional proteins for assembly and activity. Telomere elongation by telomerase in human cancer cells involves multiple steps including telomerase RNA biogenesis, holoenzyme assembly, intranuclear trafficking, and telomerase recruitment to telomeres. Although telomerase has been shown to accumulate in Cajal...
Published 12/07/2013    Read More...
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review...
Published 06/24/2015    Read More...
In budding yeast (Saccharomyces cerevisiae), the cell cycle-dependent telomere elongation by telomerase is controlled by the cyclin-dependent kinase 1 (Cdk1). The telomere length homeostasis is balanced between telomerase-unextendable and telomerase-extendable states that both require Cdc13. The recruitment of telomerase complex by Cdc13 promotes telomere elongation, while the formation of Cdc13-Stn1-Ten1 (CST) complex at the telomere blocks telomere elongation by telomerase. However, the...
Published 10/28/2013    Read More...
A constellation of related genetic diseases are caused by defects in the telomere maintenance machinery. These disorders, often referred to as telomeropathies, share symptoms and molecular mechanisms, and mounting evidence indicates they are points along a spectrum of disease. Several new causes of these disorders have been recently discovered, and a number of related syndromes may be unrecognized telomeropathies. Progress in the clinical understanding of telomeropathies has in turn driven...
Published 05/13/2014    Read More...
Abstract Like most basic molecular mechanisms, programmed -1 ribosomal frameshifting (-1 PRF) was first identified in viruses. Early observations that global dysregulation of -1 PRF had deleterious effects on yeast cell growth suggested that -1 PRF may be used to control cellular gene expression, and the cell cycle in particular. Collection of sufficient numbers of viral -1 PRF signals coupled with advances in computer sciences enabled 2 complementary computational approaches to identify -1 PRF...
Published 01/22/2015    Read More...
Tumour formation is blocked by two barriers: replicative senescence and crisis. Senescence is triggered by short telomeres and is bypassed by disruption of tumour-suppressive pathways. After senescence bypass, cells undergo crisis, during which almost all of the cells in the population die. Cells that escape crisis harbour unstable genomes and other parameters of transformation. The mechanism of cell death during crisis remains unexplained. Here we show that human cells in crisis undergo...
Published 06/25/2015    Read More...
Telomerase maintains ends of eukaryotic chromosomes, telomeres. Telomerase loss results in replicative senescence and a switch to recombination-dependent telomere maintenance. Telomerase insufficiency in humans leads to telomere syndromes associated with premature ageing and cancer predisposition. Here we use yeast to show that the survival of telomerase insufficiency differs from the survival of telomerase loss and occurs through aneuploidy. In yeast grown at elevated temperatures, telomerase...
Published 10/22/2015    Read More...
Cell senescence is one of the major paradigms of aging research. It started with the demonstration by L. Hayflick of the limited number of divisions by normal, nontransformed cells, not shown by transformed malignant cells, this processes being largely regulated by the telomere-telomerase system. A complete renewal of this discipline came from the demonstration that cells can enter senescence at any time by an anti-oncogene-triggered pathway, enabling them to escape malignancy. The senescent...
Published 05/13/2014    Read More...
The current research is aimed at finding potential non-invasive bio-markers that will help us learn more about the mechanisms at play in failed assisted reproduction treatment. This exploratory pilot study examined the relationship between cell-free DNA (CFD) in plasma and telomere length in lymphocytes among women undergoing in vitro fertilization (IVF) and compared telomere length and CFD levels to a healthy control group....
Published 10/05/2015    Read More...
To examine whether subjective sleep quality and sleep duration moderate the association between age and telomere length (TL)....
Published 01/01/2014    Read More...
Cellular senescence is the state of permanent inhibition of cell proliferation. Senescent cells are characterized by several features including increased activity of senescence-associated β-galactosidase (SA-β-GAL) and senescenceassociated secretory phenotype (SASP). In vitro, 2 types of senescence have been described. One is telomere-dependent replicative senescence and the second is stress-induced premature senescence (SIPS). Despite some tissue-specific characteristics many kinds of cells,...
Published 10/15/2014    Read More...
Since its first description over 50 years ago, cellular senescence has gained increasing attention. The number of research publications on cellular senescence last year alone is more than the number of publications in the decade in 1990s. Laboratories solely studying senescence, scientific conferences and organisations dedicated to field of cellular senescence are also on the rise. These not only indicate the growing interest in this field but also highlight the importance of cellular senescence...
Published 02/18/2015    Read More...
Judith Campis and Fabrizio d'Adda di Fagagna; Nature Reviews | Molecular Cell Biology Volume 8 | 729 Cells continually experience stress and damage from exogenous and endogenous sources, and their responses range from complete recovery to cell death. Proliferating cells can initiate an additional response by adopting a...
Published     Read More...
Virtually all human cancers display chromosome instability (CIN), a condition in which chromosomes are gained or lost at a high rate. CIN occurs early in cancer development where it may undermine the advance of the neoplastic disease. With the aim of establishing the mechanisms underlying CIN in cancer, we investigated possible links between telomere-dysfunction and centrosome defects, which were seen to coincide in early in breast carcinogenesis using human mammary epithelial cells (HMECs). In...
Published 10/09/2015    Read More...
Cerebro-retinal microangiopathy with calcifications and cysts (CRMCC) or Coats plus syndrome is a pleiotropic disorder affecting the eyes, brain, bone and gastrointestinal tract. Its primary pathogenesis involves small vessel obliterative microangiopathy. Recently, autosomal recessively inherited mutations in CTC1 have been reported in CRMCC patients. We herein report an adolescent referred to our hospital following new seizures in a context of an undefined multisystem disorder. Cerebral imaging...
Published 04/02/2015    Read More...
Progressive telomere shortening with cell division is a hallmark of aging. Short telomeres are associated with increased cancer risk, but there are conflicting reports about telomere length and mortality in breast cancer survivors....
Published 03/13/2014    Read More...
It is known that aged organisms have modified epigenomes. Epigenetic modifications, such as changes in global and locus-specific DNA methylation, and histone modifications are suspected to play an important role in cancer development and aging. In the present study, with the well-established horse aging model, we showed the global loss of DNA methylation in blood lymphocytes during juvenile-to-aged period. Additionally, we tested a pattern of DNA methylation of ribosomal DNA and selected genes...
Published 05/23/2013    Read More...
Most molecular hallmarks of cellular senescence have been identified in studies of cells aged in vitro by driving them into replicative or stress-induced senescence. Comparatively, less is known about the characteristic features of cells that have aged in vivo. Here we provide a systematic molecular analysis of normal human dermal fibroblasts (NHDFs) that were isolated from intrinsically aged human skin of young versus middle aged versus old donors. Intrinsically aged NHDFs in culture exhibited...
Published 03/27/2015    Read More...
For the first time, a plant (rice) translin was characterized. The rice translin protein, which was octameric in native state, bound efficiently to single-stranded DNA and RNA. Translin, a DNA-/RNA-binding protein, is expressed in brain, testis and in certain malignancies. It is involved in chromosomal translocation, mRNA metabolism, transcriptional regulation and telomere protection. Studies from human, mice, drosophila and yeast have revealed that it forms an octameric ring, which is important...
Published 05/27/2014    Read More...
Epidermal stem cells have been in clinical application as a source of culture-generated grafts. Although applications for such cells are increasing due to aging populations and the greater incidence of diabetes, current keratinocyte grafting technology is limited by immunological barriers and the time needed for culture amplification. We studied the feasibility of using human fetal skin cells for allogeneic transplantation and showed that fetal keratinocytes have faster expansion times, longer...
Published 07/10/2014    Read More...
TERT encodes the telomerase reverse transcriptase, which is responsible for maintaining telomere ends by addition of (TTAGGG) n nucleotide repeats at the telomere.  Recent genome-wide association studies have found common genetic variants at the TERT-CLPTM1L locus (5p15.33) associated with an increased risk of several cancers. ...
Published 10/02/2014    Read More...
Mutations in components of the 3' mRNA splicing machinery are found in almost 50% of myelodysplastic syndrome (MDS) cases. In this issue of Cancer Cell, Kim and colleagues, Colla and colleagues, and Shirai and colleagues report on the impact of mutated or dysregulated splicing factors to hematopoiesis, mRNA splicing, and MDS pathogenesis....
Published 05/13/2015    Read More...
Telomerase is a key participant in the telomere length maintaining system in eukaryotic cells. Telomerase RNA and protein reverse transcriptase subunits are essential for the appearance of active telomerase in vitro. Telomerase is active in many cancer types and is a potential target for anticancer drug development. Here we report a new approach for impairing telomerase function at the stage of human telomerase assembly. The approach is based on the application of chimeric bifunctional...
Published 07/31/2014    Read More...
In recent years there has been a large expansion in our understanding of SIRT6 biology including its structure, regulation, biochemical activity, and biological roles. SIRT6 functions as an ADP-ribosylase and NAD(+)-dependent deacylase of both acetyl groups and long-chain fatty-acyl groups. Through these functions SIRT6 impacts upon cellular homeostasis by regulating DNA repair, telomere maintenance, and glucose and lipid metabolism, thus affecting diseases such diabetes, obesity, heart disease,...
Published 01/14/2014    Read More...
Higher-order chromatin structure is often perturbed in cancer and other pathological states. Although several genetic and epigenetic differences have been charted between normal and breast cancer tissues, changes in higher-order chromatin organization during tumorigenesis have not been fully explored. To probe the differences in higher-order chromatin structure between mammary epithelial and breast cancer cells, we performed Hi-C analysis on MCF-10A mammary epithelial and MCF-7 breast cancer...
Published 09/28/2015    Read More...
Chromosomal instability is defined as a state of numerical and/or structural chromosomal anomalies in cells. Numerous studies have documented the incidence of chromosomal instability, which acutely or chronically may lead to accelerated ageing (tissue-wide or even organismal), cancer or other genetic disorders. Potential mechanisms leading to the generation of chromosome-genome instability include erroneous/inefficient DNA repair, chromosome segregation defects, spindle assembly defects, DNA...
Published 08/28/2015    Read More...
Telomere crisis occurs during tumorigenesis when depletion of the telomere reserve leads to frequent telomere fusions. The resulting dicentric chromosomes have been proposed to drive genome instability. Here, we examine the fate of dicentric human chromosomes in telomere crisis. We observed that dicentric chromosomes invariably persisted through mitosis and developed into 50-200 μm chromatin bridges connecting the daughter cells. Before their resolution at 3-20 hr after anaphase, the...
Published 12/21/2015    Read More...
Chromothripsis is a recently discovered phenomenon of genomic rearrangement, possibly arising during a single genome-shattering event. This could provide an alternative paradigm in cancer development, replacing the gradual accumulation of genomic changes with a "one-off" catastrophic event. However, the term has been used with varying operational definitions, with the minimal consensus being a large number of locally clustered copy number aberrations. The mechanisms underlying these...
Published 01/29/2014    Read More...
Chronic Hepatitis B virus (HBV) infection can lead to the development of chronic hepatitis, cirrhosis and hepatocellular carcinoma. We hypothesized that HBV might accelerate hepatocyte ageing and investigated the effect of HBV on hepatocyte cell cycle state and biological age. We also investigated the relation between inflammation, fibrosis and cell cycle phase....
Published 05/29/2015    Read More...
Activated CD8+ T-cells correlate with viral load and may foretell antiretroviral therapy (ART) failure. HIV infection has been suggested to accelerate immunosenescence through chronic persistent inflammation. Alcohol-use disorders (AUD) are prevalent in persons living with HIV/AIDS (PLWHA). We tested the hypothesis that hazardous alcohol consumption accelerates immune activation and immunosenescence. Immune activation and immunosenescence were examined in CD8+ T lymphocytes (CD3+CD4-CD8+)...
Published 10/27/2015    Read More...
Large liver cell changes (LLCC) are characterized by pleomorphic large nuclei frequently found in liver diseases as chronic viral hepatitis and liver cirrhosis. The origin of this lesion remains cryptic, but the presence of LLCC is correlated with an increased risk of hepatocellular carcinoma. Telomeric repeat binding factor 1 (TRF1) is part of the shelterin complex and is essential for telomere protection. Ablation of TRF1 induces telomere fragility and fusions and chromosomal instability....
Published 03/27/2015    Read More...
It is supposed that the development and aging of multicellular animals and humans are controlled by a special form of the clock mechanism - a chronograph. The development of animals and their aging are interconnected by the program of the species lifespan that has been selected in the evolution of each species to fit the resources of its ecological niche. The theory is based on the idea about a controlled loss by the neurons in the brain of hypothetical organelles - chronomeres that represent...
Published 04/22/2015    Read More...
It is supposed that the development and aging of multicellular animals and humans are controlled by a special form of the clock mechanism - a chronograph. The development of animals and their aging are interconnected by the program of the species lifespan that has been selected in the evolution of each species to fit the resources of its ecological niche.
Published 06/09/2015    Read More...
Recent large-scale prospective studies suggest that long telomeres are associated with an increase cancer risk, counter to conventional wisdom....
Published 01/06/2015    Read More...
The role of telomeres and telomerase in colorectal cancer (CRC) is well established as the major driving force in generating chromosomal instability. However, their potential as prognostic markers remains unclear. We investigated the outcome implications of telomeres and telomerase in this tumour type. We considered telomere length (TL), ratio of telomere length in cancer to non-cancer tissue (T/N ratio), telomerase activity and TERT levels; their relation with clinical variables and their role...
Published 02/25/2016    Read More...
Previously, we reported that alternative lengthening of telomere (ALT) may be a biomarker for chemo-sensitivity and late recurrence in neuroblastoma (NBL). In this study, alterations of ATRX or DAXX, which both encode chromatin remodeling proteins in telomeric region, and their relationship to ALT were examined in NBLs....
Published 11/14/2014    Read More...
Successful lung transplantation for patients with pulmonary fibrosis from telomerase mutations may be limited by systemic complications of telomerase dysfunction, including myelosuppression, cirrhosis, and malignancy. We describe clinical outcomes in 14 lung transplant recipients with telomerase mutations....
Published 05/11/2015    Read More...
Tumorigenesis is a complex process of accumulated alteration in function of multiple genes and pathways. Wnt signalling pathway is involved in various differentiation events during embryonic development and is conserved in various species....
Published 01/15/2015    Read More...
The detection of individual telomere lengths of human chromosomes can provide crucial information on genome stability, cancer, and telomere-related diseases. However, current methods to measure telomere length entail shortcomings that have limited their use. Recently, we have developed a method for detection of individual telomere lengths (DITL) that uses a chemistry-based DNA-cutting approach. The most beneficial feature of the DITL approach is to cleave the sequence adjacent to the telomere...
Published 06/02/2015    Read More...
Hispanic Americans comprise the largest and fastest-growing ethnic minority in the USA. In Houston, Texas, 44% of the population is of Hispanic descent, with the majority being Mexican Americans (78%). This population is under-represented in health-related research despite their high prevalence of obesity and diabetes, which may predispose them to cancer and other chronic conditions. Recognizing the need for a greater research effort into the health risks of Hispanic Americans, the...
Published 03/08/2015    Read More...
The telomerase is responsible for adding telomeric repeats to chromosomal ends and consists of the reverse transcriptase TERT and the RNA subunit TERC. The expression and activity of the telomerase are tightly regulated, and aberrant activation of the telomerase has been observed in >85% of human cancers. To better understand telomerase regulation, we performed immunoprecipitations coupled with mass spectrometry (IP-MS) and identified cold inducible RNA-binding protein (CIRP or hnRNP A18) as a...
Published 12/15/2015    Read More...
As an important biomarker and therapeutic target, telomerase has attracted considerable attention concerning its detection and monitoring. Here, we present a colorimetry and surface enhanced Raman scattering (SERS) dual-mode telomerase activity detection method, which has several distinctive advantages. First, colorimetric functionality allows rapid preliminary discrimination of telomerase activity by the naked eye. Second, the employment of SERS technique results in greatly improved detection...
Published 01/17/2014    Read More...
Genetic instability, a hallmark feature of human cancers including prostatic adenocarcinomas, is considered a driver of metastasis. Somatic copy number alterations (CNA) are found in most aggressive primary human prostate cancers, and the overall number of such changes is increased in metastases. Chromosome 10q23 deletions, encompassing PTEN, and amplification of 8q24, harboring MYC, are frequently observed, and the presence of both together portends a high risk of prostate cancer-specific...
Published 11/10/2015    Read More...
Telomere shortening has been suggested to be a genetic predictor for various cancers. However, evidences about this point with respect to esophageal squamous cell carcinoma (ESCC) in Han Chinese populations remain limited. Our previous study demonstrated that p53 Arg72Pro polymorphism was associated with the risk of human papillomavirus (HPV)-related ESCC. Telomeres and p53 play important roles in maintaining genomic stability and regulating the cell cycle. HPV impacts both telomere length...
Published 08/18/2014    Read More...
Authors: Amy E AE. Taylor, Marcus R MR. Munafò Published: 08/14/2014, International journal of epidemiology PubMed Full Text...
Published 08/14/2014    Read More...
To determine the mutation status of human telomerase reverse transcriptase gene (TERT) promoter region in hepatocellular carcinoma (HCC) from different geographical regions....
Published 01/09/2015    Read More...
Genome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM genes appeared to be strongly conserved, with copy number variation in only four genes. Interestingly, we found NMR to have a higher copy number of CEBPG, a regulator of DNA repair, and TINF2, a protector of...
Published 01/28/2015    Read More...
Zidovudine and tenofovir are the two main nucleos(t)ide analogs used to prevent mother-to-child transmission of HIV. In vitro, both drugs bind to and integrate into human DNA and inhibit telomerase. The objective of the present study was to assess the genotoxic effects of either zidovudine or tenofovir-based combination therapies on cord blood cells in newborns exposed in utero....
Published 06/23/2015    Read More...
We present a classic interactome bioinformatic analysis and a study on competing endogenous (ce) RNAs for hTERT. The hTERT gene codes for the catalytic subunit and limiting component of the human telomerase complex. Human telomerase reverse transcriptase (hTERT) is essential for the integrity of telomeres. Telomere dysfunctions have been widely reported to be involved in aging, cancer, and cellular senescence. The hTERT gene network has been analyzed using the BioGRID interaction database...
Published 04/08/2014    Read More...
The present study was primarily undertaken to examine the hypothesis that mitochondrial DNA (mtDNA) mutations and telomere length may be associated with aplastic anemia (AA). Our study included a single institution analysis of 40 patients presenting with AA first diagnosed at the Affiliated Hospital of Shandong, University of Traditional Chinese Medicine between 2010 and 2013. Bone marrow and oral epithelial samples were collected from patients with AA (n=40) for mtDNA mutation and telomere...
Published 08/13/2014    Read More...
In humans, the cause of arrested migration of the median thyroid anlage resulting in an ectopic sublingual gland is unknown. These ectopic glands have a normal follicular architecture but their thyrotropin-induced growth is insufficient, leading to congenital hypothyroidism in the vast majority of affected subjects. We hypothesized that arrested migration is due to premature differentiation [reflected by decreased telomere length (TL)], as observed in neural tube defects in mice....
Published 08/03/2015    Read More...
Telomere maintenance is a highly coordinated process, and its misregulation is linked to cancer and telomere-shortening syndromes. Recent studies have shown that the TEL-patch--a cluster of amino acids on the surface of the shelterin component TPP1--is necessary for the recruitment of telomerase to the telomere in human cells. However, there has been only basic biochemical analysis of the role of TPP1 in the telomerase recruitment process. Here we develop an in vitro assay to quantitatively...
Published 01/23/2015    Read More...
The observation that human fibroblasts have a limited number of cell population doublings in vitro led to the proposal that it is the expression of cellular aging. In vitro, the proliferation of human fibroblasts terminates with a postmitotic cell which was called senescent cell. Due to misinterpreted experiments, the latter was considered the hallmark of cellular aging, although obviously we do not age because our cells stop dividing. The so-called senescent cell has been the core of the...
Published 05/13/2014    Read More...
The telomere-telomerase system has a unique role in the biology of cancer. Telomere maintenance, mostly affected by the up regulation of telomerase activity, is a prerequisite for perpetuation of malignant cells. This fundamental biologic feature defines telomere maintenance as an attractive therapeutic target for most types of cancer. This review summarizes some critical aspects of telomere biology with special emphasis on the connection to anticancer therapy. In particular, the effects on the...
Published 10/22/2014    Read More...
In Drosophila, a group of retrotransposons is mobilized exclusively to telomeres in a sequence-independent manner. How they target chromosome ends is not understood. Here, we focused on the telomeric element HeT-A and characterized the cell cycle expression and cytological distribution of its protein and RNA products. We determined the timing of telomere replication by creating a single lacO-marked telomere and provide evidence suggesting that transposon expression and recruitment to telomeres...
Published 04/14/2014    Read More...
Terminal restriction fragment (TRF) analysis of human telomeres was used to calibrate flow-fluorescence in situ hybridization (FF) measures of telomere lengths to expand the range of measures and increase power of resolution of our previously published protocol. TRF data used as the gold standard should be obtained by electrophoresis with suitable resolution applied to appropriately isolated genomic DNA. When we considered TRF attained by correct methods, we found our method to be insufficiently...
Published 01/23/2014    Read More...
Epstein-Barr virus (EBV)-associated malignancies, as well as lymphoblastoid cell lines (LCLs), obtained in vitro by EBV infection of B cells, express latent viral proteins and maintain their ability to grow indefinitely through inappropriate activation of telomere-specific reverse transcriptase (TERT), the catalytic component of telomerase. Our previous studies demonstrated that high levels of TERT expression in LCLs prevent the activation of EBV lytic cycle, which is instead triggered by TERT...
Published 05/28/2015    Read More...
Genetic integrity in proliferating cells is guaranteed by the harmony of DNA replication, appropriate DNA repair, and segregation of the duplicated genome. Breast cancer susceptibility gene BRCA2 is a unique tumor suppressor that is involved in all three processes. Hence, it is critical in genome maintenance. The functions of BRCA2 in DNA repair and homology-directed recombination (HDR) have been reviewed numerous times. Here, I will briefly go through the functions of BRCA2 in HDR and focus on...
Published 10/16/2014    Read More...
To minimize the risk of tumorigenesis in mesenchymal stem cells (MSCs), G-banding analysis is widely used to detect chromosomal aberrations in MSCs. However, a critical limitation of G-banding is that it only reflects the status of metaphase cells, which can represent as few as 0.01% of tested cells. During routine cytogenetic testing in MSCs, we often detect chromosomal aberrations in minor cell populations. Therefore, we aimed to investigate whether such a minority of cells can expand over...
Published 04/18/2015    Read More...
Leucocyte telomere length (LTL), which is fashioned by multiple genes, has been linked to a host of human diseases, including sporadic melanoma. A number of genes associated with LTL have already been identified through genome-wide association studies. The main aim of this study was to establish whether DCAF4 (DDB1 and CUL4-associated factor 4) is associated with LTL. In addition, using ingenuity pathway analysis (IPA), we examined whether LTL-associated genes in the general population might...
Published 01/26/2015    Read More...
The spatial and temporal organization of the genome has emerged as an additional level of regulation of nuclear functions. Structural proteins associated with the nuclear envelope play important roles in the organization of the genome. The nuclear lamina, a polymeric meshwork formed by lamins (A- and B-type) and lamin-associated proteins, is viewed as a scaffold for tethering chromatin and protein complexes regulating a variety of nuclear functions. Alterations in lamins function impact DNA...
Published 02/24/2014    Read More...
Cellular senescence is a state of permanent replicative arrest that allows cells to stay viable and metabolically active but resistant to apoptotic and mitogenic stimuli. Specific, validated markers can identify senescent cells, including senescence-associated β galactosidase activity, chromatin alterations, cell morphology changes, activated p16- and p53-dependent signaling and permanent cell cycle arrest. Senescence is a natural consequence of DNA replication-associated telomere erosion, but...
Published 09/08/2014    Read More...
Human-infecting microbial pathogens all face a serious problem of elimination by the host immune response. Antigenic variation is an effective immune evasion mechanism where the pathogen regularly switches its major surface antigen. In many cases, the major surface antigen is encoded by genes from the same gene family, and its expression is strictly monoallelic. Among pathogens that undergo antigenic variation, Trypanosoma brucei (a kinetoplastid), which causes human African trypanosomiasis,...
Published 01/09/2015    Read More...
Whole genome sequencing of cancer genomes has revealed a diversity of recurrent gross chromosomal rearrangements (GCRs) that are likely signatures of specific defects in DNA damage response pathways. However, inferring the underlying defects has been difficult due to insufficient information relating defects in DNA metabolism to GCR signatures. By analyzing over 95 mutant strains of Saccharomyces cerevisiae, we found that the frequency of GCRs that deleted an internal CAN1/URA3 cassette on chrV...
Published 04/03/2014    Read More...
Authors: Nam Woo NW. Cho, Roger A RA. Greenberg Published: 02/04/2015, Nature PubMed Full Text...
Published 02/04/2015    Read More...
Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the "Pattern Finder" G-quadruplex (G4) predictor algorithm...
Published 09/05/2014    Read More...
Telomeres consist of TTAGGG repeats bound by the shelterin complex and end with a 3' overhang. In humans, telomeres shorten at each cell division, unless telomerase (TERT) is expressed and able to add telomeric repeats. For effective telomere maintenance, the DNA strand complementary to that made by telomerase must be synthesized. Recent studies have discovered a link between different activities necessary to process telomeres in the S phase of the cell cycle to reform a proper overhang....
Published 12/17/2014    Read More...
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP-A1) has been implicated in telomere protection and telomerase activation. Recent evidence has further demonstrated that hnRNP-A1 plays a crucial role in maintaining newly replicated telomeric 3' overhangs and facilitating the switch from replication protein A (RPA) to protection of telomeres 1 (POT1). The role of hnRNP-A1 in telomere protection also involves DNA-dependent protein kinase catalytic subunit (DNA-PKcs), although the detailed...
Published 05/20/2015    Read More...
Human telomeres associate with shelterin, a six-protein complex that protects chromosome ends from being recognized as sites of DNA damage. The shelterin subunit TRF2 (telomeric repeat-binding factor 2) protects telomeres by facilitating their organization into the protective capping structure. We have reported previously that the DNA-PKcs (DNA-dependent protein kinase catalytic subunit)-interacting protein KIP associates with telomerase through an interaction with hTERT (human telomerase...
Published 09/08/2014    Read More...
Expression of type I interferons (IFNs) can be induced by DNA-damaging agents, but the mechanisms and significance of this regulation are not completely understood. We found that the transcription factor IRF3, activated in an ATM-IKKα/β-dependent manner, stimulates cell-autonomous IFN-β expression in response to double-stranded DNA breaks. Cells and tissues with accumulating DNA damage produce endogenous IFN-β and stimulate IFN signaling in vitro and in vivo. In turn, IFN acts to amplify...
Published 04/23/2015    Read More...
Authors: Sreenivasan S. Sasidharan, Subramanion L SL. Jothy, Nowroji N. Kavitha, Yeng Y. Chen, Jagat R JR. Kanwar Published: 01/09/2016, Asian Pacific journal of cancer prevention : APJCP PubMed...
Published 01/09/2016    Read More...
Uracil in the genome can result from misincorporation of dUTP instead of dTTP during DNA synthesis, and is primarily removed by uracil DNA glycosylase (UNG) during base excision repair. Telomeres contain long arrays of TTAGGG repeats and may be susceptible to uracil misincorporation. Using model telomeric DNA substrates, we showed that the position and number of uracil substitutions of thymine in telomeric DNA decreased recognition by the telomere single-strand binding protein, POT1. In primary...
Published 01/08/2015    Read More...
Under selection pressure from pathogens, variable NK cell receptors that recognize polymorphic MHC class I evolved convergently in different species of placental mammal. Unexpectedly, diversified killer cell Ig-like receptors (KIRs) are shared by simian primates, including humans, and cattle, but not by other species. Whereas much is known of human KIR genetics and genomics, knowledge of cattle KIR is limited to nine cDNA sequences. To facilitate comparison of the cattle and human KIR gene...
Published 11/14/2014    Read More...
Cancer was recognized as a genetic disease at least four decades ago, with the realization that the spontaneous mutation rate must increase early in tumorigenesis to account for the many mutations in tumour cells compared with their progenitor pre-malignant cells. Abnormalities in the deoxyribonucleotide pool have long been recognized as determinants of DNA replication fidelity, and hence may contribute to mutagenic processes that are involved in carcinogenesis. In addition, many anticancer...
Published 08/24/2015    Read More...
Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that is implicated in plethora of biological processes, including metabolism, aging, stress response, and tumorigenesis. Telomerase (TERT) is essential for telomere maintenance. Activation of TERT is considered a crucial step in tumorigenesis, and therefore it is a potential therapeutic target against cancer. We have recently found that SIRT1 expression is highly elevated in hepatocellular carcinoma, and the...
Published 01/08/2014    Read More...
Depression is associated with an increased risk of mortality in patients with cancer; it has been hypothesized that depression-associated alterations in cell aging mechanisms, in particular, the telomere/telomerase maintenance system, may underlie this increased risk. We evaluated the association of depressive symptoms and telomere length to mortality and recurrence/progression in 464 patients with bladder cancer....
Published 11/21/2014    Read More...
Following the results we previously reported on a series of xanthene and xanthone derivatives as G-quadruplex stabilizing ligands, in order to obtain a more selective compound with respect to the previous generation of derivatives, we decided to modify the structure of the core ligand, specifically its aromatic extension. In particular, here we report the design, synthesis and activity data of a new compound obtained by dimerization of the xanthene core (HELIXA4C). The reported results show that...
Published 11/03/2014    Read More...
Loss of function or mutation of the ataxia-telangiectasia mutated gene product (ATM) results in inherited genetic disorders characterized by neurodegeneration, immunodeficiency, and cancer. Ataxia-telangiectasia mutated (ATM) gene product belongs to the PI3K-like protein kinase (PIKKs) family and is functionally implicated in mitogenic signal transduction, chromosome condensation, meiotic recombination, cell-cycle control, and telomere maintenance. The ATM protein kinase is primarily activated...
Published 04/01/2015    Read More...
Telomerase participates in malignant transformation or immortalization of cells and thus has attracted attention as an anticancer drug target and diagnostic tumor marker. The telomeric repeat amplification protocol (TRAP) and improved TRAP methods (TRAP-fluorescence, TRAP-hybridization, etc.) are widely used forms of this telomerase assay. However, these approaches generally employ acrylamide gel electrophoresis after amplification of telomeric repeats by polymerase chain reaction (PCR), making...
Published 04/27/2015    Read More...
In humans, telomere length studies have acquired great relevance because the length of telomeres has been related to natural processes like disease, aging and cancer. However, very little is known about the influence of telomere length on the biology of wild type plants. The length of plant telomeres has been usually studied by Terminal Restriction Fragment (TRF) analyses. This technique requires high amounts of tissue, including multiple cell types, which might be the reason why very little is...
Published 07/02/2014    Read More...
Mathematical modelling has been instrumental to understand kinetics of radiation-induced DNA damage repair and associated secondary cancer risk. The widely accepted two-lesion kinetic (TLK) model assumes two kinds of double strand breaks, simple and complex ones, with different repair rates. Recently, persistent DNA damage associated with telomeres was reported as a new kind of DNA damage. We therefore extended existing versions of the TLK model by new categories of DNA damage and re-evaluated...
Published 09/11/2015    Read More...
Randomized clinical trials in pediatric aplastic anemia (AA) are rare and data to guide standards of care are scarce....
Published 11/27/2013    Read More...
Chronic inflammation negatively impacts all physiological functions, causing an array of degenerative conditions including diabetes; cancer; cardiovascular, osteo-articular, and neurodegenerative diseases; autoimmunity disorders; and aging. In particular, there is a growing knowledge of the role that gene transcription factors play in the inflammatory process. Obesity, metabolic syndrome, and diabetes represent multifactorial conditions resulting from improper balances of hormones and gene...
Published 09/24/2015    Read More...
Dietary factors can affect telomere length (TL), a biomarker of aging, through oxidation and inflammation-related mechanisms. A Dietary Inflammatory Index (DII) could help to understand the effect of the inflammatory potential of the diet on telomere shortening....
Published 09/09/2015    Read More...
TP53 mutations are the most common mutations in human cancers, and TP53-R175H and TP53-R273H are the most frequent. The impact of these mutations on genomic instability after tumor initiation is still uncovered. To gain insight into this, we studied the effects of three specific TP53 mutants (TP53-V143A, TP53-R175H, and TP53-R273H) on genomic instability using four isogenic lines of LoVo cells. Multicolor fluorescence in situ hybridization (FISH), three-dimensional (3D) quantitative FISH...
Published 07/25/2014    Read More...
Telomerase reverse transcriptase (TERT) maintains telomeres and is rate limiting for replicative life span. While most somatic tissues silence TERT transcription resulting in telomere shortening, cells derived from cancer or cardiovascular diseases express TERT and activate telomerase. In the present study, we demonstrate that histone deacetylase (HDAC) inhibition induces TERT transcription and promoter activation. At the protein level in contrast, HDAC inhibition decreases TERT protein...
Published 11/16/2015    Read More...
Nuclear α-thalassemia/mental retardation X-linked (ATRX) loss and alternative lengthening of telomeres (ALT) are linked in distinct malignancies. We therefore aimed to determine the nuclear ATRX expression correlated with ALT in a comprehensive series of sarcomas....
Published 10/21/2015    Read More...
Meibomian gland carcinoma (MGC) and basal cell carcinoma (BCC) are common eyelid carcinomas that exhibit highly dissimilar degrees of proliferation and prognoses. We address here the question of the differential mechanisms between these two eyelid cancers that explain their different outcome. A total of 102 confirmed MGC and 175 diagnosed BCC cases were analyzed. Twenty confirmed MGC and twenty diagnosed BCC cases were collected to determine the telomere length, the presence of senescent cells,...
Published 10/23/2015    Read More...
We have investigated the effects of hyperthermia (HT) on cell proliferation and telomerase activity of human hematopoietic stem cells (HSCs) and compared with human leukemic cell lines (TF-1, K562 and HL-60). The cells were exposed to HT at 42 and 43 °C up to 120 min. The cells were incubated at 37 °C for 96 h. Then the cells were collected and assayed for cell proliferation, viability, telomerase activity, and terminal restriction fragment (TRF) lengths. The enzyme activity from HSCs was...
Published 06/14/2014    Read More...
G-quadruplexes have shown great promise as chemotherapeutic targets, probably by inhibiting telomere elongation or downregulating oncogene expression. There have been many G-quadruplex ligands developed over the years but only a few have drug-like properties. Consequently only a few G-quadruplex ligands have entered clinical trials as cancer chemotherapeutic agents. The DNA minor groove ligand, berenil (diminazene aceturate or DMZ), is used to treat animal trypanosomiasis and hence its...
Published 08/27/2014    Read More...
The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination...
Published 10/09/2015    Read More...
Telomeric repeat-containing RNA (TERRA) is a novel and very attractive antitumoral target. Here, we report the first successful application of (19)F-NMR fragment-based screening to identify chemically diverse compounds that bind to an RNA molecule such as TERRA. We have built a library of 355 fluorinated fragments, and checked their interaction with a long telomeric RNA as a target molecule. The screening resulted in the identification of 20 hits (hit rate of 5.6%). For a number of binders,...
Published 05/28/2014    Read More...
Soft tissue sarcomas (STS) are malignant tumors of mesenchymal origin. A substantial portion of these tumors exhibits complex karyotypes and lack characterized chromosomal aberrations. Owing to such properties, both histopathologic and molecular classification of these tumors has been a significant challenge. This study examines the protein expression of a large number of human STS, including subtype heterogeneity, using two-dimensional gel proteomics. In addition, detailed proteome profiles of...
Published 07/28/2014    Read More...
Authors: Published: 03/24/2014, Journal of the American College of Surgeons PubMed Full Text...
Published 03/24/2014    Read More...
Most human cancers depend on the telomerase to maintain telomeres; however, about 10% of cancers are telomerase negative and utilize the alternative lengthening of telomeres (ALT) mechanism. Mutations in the DAXX gene have been found frequently in both telomerase-positive and ALT cells, and how DAXX mutations contribute to cancers remains unclear. We report here that endogenous DAXX can localize to Cajal bodies, associate with the telomerase and regulate telomerase targeting to telomeres....
Published 11/21/2014    Read More...
Hepatitis-associated aplastic anemia (HAA) is a variant of acquired aplastic anemia (AA) in which immune-mediated bone marrow failure (BMF) develops following an acute episode of seronegative hepatitis. Dyskeratosis congenita (DC) is an inherited BMF syndrome characterized by the presence of short telomeres, mucocutaneous abnormalities, and cancer predisposition. While both conditions may cause BMF and hepatic impairment, therapeutic approaches are distinct, making it imperative to establish the...
Published 01/23/2016    Read More...
Maintenance of chromosomal ends (telomeres) directly contributes to cancer cell immortalization. The telomere protection enzymes belonging to the tankyrase (Tnks) subfamily of poly(ADP-ribose) polymerases (PARPs) have recently been shown to also control transcriptional response to secreted Wnt signaling molecules. Whereas Tnks inhibitors are currently being developed as therapeutic agents for targeting Wnt-related cancers and as modulators of Wnt signaling in tissue-engineering agendas, their...
Published 05/04/2015    Read More...
Shelterin, a six-member complex, protects telomeres from nucleolytic attack and regulates their elongation by telomerase. Here, we have developed a strategy, called MICro-MS (Mapping Interfaces via Crosslinking-Mass Spectrometry), that combines crosslinking-mass spectrometry and phylogenetic analysis to identify contact sites within the complex. This strategy allowed identification of separation-of-function mutants of fission yeast Ccq1, Poz1, and Pot1 that selectively disrupt their respective...
Published 09/10/2015    Read More...
In efforts to find agents with improved biological activity against cancer cells, recent years have seen an increased interest in the study of small molecules able to bind the deoxyribonucleic acid (DNA) when it assumes secondary structures known as G-quadruplexes (G4s) preferring them over the B form. Currently, several compounds reported in literature have already shown to be good candidates as G4s DNA stabilizers. Even though some specific features for the G4s affinity are known, such as a...
Published 06/24/2014    Read More...
Recently various pathways of human telomere (ht) DNA folding into G-quadruplexes and of ligand binding to these structures have been proposed. However, the key issue as to the nature of forces driving the folding and recognition processes remains unanswered. In this study, structural changes of 22-mer ht-DNA fragment (Tel22), induced by binding of ions (K(+), Na(+)) and specific bisquinolinium ligands, were monitored by calorimetric and spectroscopic methods and by gel electrophoresis. Using the...
Published 06/18/2015    Read More...
Human mesenchymal stem cells (hMSCs) are multipotent non-hematopoietic precursor cells with the ability to differentiate into several tissue types. The use of hMSCs has gained significant importance in cancer therapies as well as a large number of degenerative disease therapies due to their homing abilities. However, these cells may undergo spontaneous transformation leading to them bypassing naturally built-in cell controls that could lead to senescence and carcinogenesis. Therefore, although...
Published 03/21/2016    Read More...
Recent studies have revealed that repressor/activator protein (Rap1) not only protects telomeres from sister chromatid exchange, but also functions in genomewide transcriptional regulation. Knockdown of Rap1 sensitizes breast cancer cells to adriamycin-induced apoptosis. However, little is known about the role of Rap1 in the progression of hepatocellular carcinoma (HCC). The present study aimed to investigate the functions of Rap1 in HCC progression and to determine whether targeting the Rap1...
Published 02/19/2014    Read More...
The functions of the high mobility group box 1 (HMGB1) in tumor cells include replenishing telomeric DNA and maintaining cell immortality. There is a negative correlation between human telomerase reverse transcriptase (hTERT) and radiosensitivity in tumor cells. Our aim was to elucidate the relationship among HMGB1, telomere homeostasis and radiosensitivity in MCF-7 cells. In this study, we established stably transfected control (MCF-7-NC) and HMGB1 knockdown (MCF-7-shHMGB1) cell lines. The...
Published 12/10/2014    Read More...
Chronic administration of immunosuppressants has been associated with long-term consequences, including a higher risk of neoplasm development. The processes regulating telomere function exert a major influence on human cancer biology. The present study aimed to assess the effect of immunosuppressive therapy on the expression of genes associated with telomere maintenance and protection in patients following renal transplantation. A total of 51 patients that had undergone kidney transplantation...
Published 10/02/2015    Read More...
Poly(ADP-ribose) polymerases (PARP) and the Mre11, Rad50, and Nbs1 (MRN) complex are key regulators of DNA repair, and have been recently shown to independently regulate telomere length. Sensitivity of cancers to PARPi is largely dependent on the BRCAness of the cells. Unfortunately, the vast majority of cancers are BRCA-proficient. In this study, therefore, we investigated whether a targeted molecular "hit" on the MRN complex, which is upstream of BRCA, can effectively sensitize BRCA-proficient...
Published 10/16/2014    Read More...
Dubowitz syndrome is a rare disorder characterized by multiple congenital anomalies, cognitive delay, growth failure, an immune defect, and an increased risk of blood dyscrasia and malignancy. There is considerable phenotypic variability, suggesting genetic heterogeneity. We clinically characterized and performed exome sequencing and high-density array SNP genotyping on three individuals with Dubowitz syndrome, including a pair of previously-described siblings (Patients 1 and 2, brother and...
Published 06/03/2014    Read More...
Telomeres play an important role in cancer progression. Recently it has been shown that subtelomeric methylation, negatively regulates telomere length in various diseases, including cancers. Here we evaluated the influence of subtelomeric methylation in telomere dysfunction in gallbladder cancer (GBC), and whether this dysfunction is affected by the presence of gallstones....
Published 02/08/2016    Read More...
Dyskeratosis congenita (DC) is an inherited disease characterized by the triad of skin pigmentation, nail dystrophy, and oral leukoplakia. Among other abnormalities, bone marrow failure and a predisposition to cancer are recognized as the major causes of premature mortality in patients with DC. This disease is associated with short telomeres and mutations in 10 genes associated with telomerase and telomere components. The case of a 35-year-old male patient diagnosed with DC, who presented with...
Published 01/05/2016    Read More...
To investigate the immunohistochemical expression of dyskerin, a biomarker involved in ribosome production and telomere maintenance, in human fetal, adult and neoplastic bile ducts, and possible correlations with cholangiocarcinoma aggressiveness....
Published 11/13/2014    Read More...
Authors: Jenny J. Dahlström, Xiaolu X. Zhang, Mehran M. Ghaderi, Malin M. Hultcrantz, Magnus M. Björkholm, Dawei D. Xu Published: 07/16/2015, Haematologica PubMed Full Text...
Published 07/16/2015    Read More...
We have shown that E-type cyclins are key regulators of mammalian male meiosis. Depletion of cyclin E2 reduced fertility in male mice due to meiotic defects, involving abnormal pairing and synapsis, unrepaired DNA, and loss of telomere structure. These defects were exacerbated by additional loss of cyclin E1, and complete absence of both E-type cyclins produces a meiotic catastrophe. Here, we investigated the involvement of E-type cyclins in maintaining telomere integrity in male meiosis....
Published 12/28/2015    Read More...
Aplastic anemia is a heterogeneous disorder of bone marrow failure syndrome. Accumulating evidence indicates that both acquired and congenital aplastic anemia is linked to telomerase activity and telomere length. Chinese herbal medicine Tianshengyuan-1 (TSY-1), a liquid extraction of multiple Chinese herbs, appears to stimulate hematopoiesis in patients with bone marrow deficiencies; however, the exact mechanism of action remains unclear. In this study, we investigated the effect of TSY-1 on...
Published 03/15/2014    Read More...
Senescent cells, which express p16 (INK4a) , accumulate with aging and contribute to age-related pathology. To understand whether cytotoxic agents promote molecular aging, we measured expression of p16 (INK4a) and other senescence markers in breast cancer patients treated with adjuvant chemotherapy....
Published 03/28/2014    Read More...
Interleukin-21 (IL-21) can enhance the effector function of natural killer (NK) cells but also limits their proliferation when continuously combined with IL-2/IL-15. Paradoxically, membrane-bound (mb)-IL-21 has been shown to improve human NK cell proliferation when cultured with IL-2/mb-IL-15. To clarify the role of IL-21, we investigated the effect of the timing of IL-21 addition to NK cell culture....
Published 06/18/2014    Read More...
Novel treatment approaches are desperately needed for malignant rhabdoid tumor (MRT). Telomerase is an attractive therapeutic target because it is specific to cancer and critical for cancer cell immortality. We evaluated the effect of the telomerase inhibitor imetelstat in preclinical models of MRT. Three MRT cell lines, BT-12, G401, and RT-peri, were treated with the telomerase inhibitor imetelstat. The effects of imetelstat on telomere length, DNA damage response, and cell proliferation were...
Published 09/16/2014    Read More...
Telomere length is related to cellular aging and cardiovascular disease. Nevertheless, the specific role of cellular aging in this process is still unclear. The aim of this report was to analyze the prognostic value of telomere length in men admitted for acute coronary syndrome. Telomere length was measured by quantitative polymerase chain reaction in peripheral blood leukocytes of 203 men classified into 2 groups: those aged 50 to 75 years and those >75 years. Clinical follow-up had been done...
Published 11/07/2013    Read More...
PCBs are persistent organic pollutants that are carcinogenic and immunotoxic and have developmental toxicity. This suggests that they may interfere with normal cell maturation. Cancer and stem/progenitor cells have telomerase activity to maintain and protect the chromosome ends, but lose this activity during differentiation. We hypothesized that PCBs interfere with telomerase activity and the telomere complex, thereby disturbing cell differentiation and stem/progenitor cell function. HL-60 cells...
Published 09/02/2015    Read More...
Treatment with chemotherapeutics agents may induce persistent DNA damage in male germ cells with the possibility of long-term consequences on fertility and progeny outcome. Telomeres, specialized structures at the physical ends of chromosomes, play an important role in the maintenance of genetic stability and in the response of somatic cells to anticancer drugs. Our objective was to test the hypothesis that exposure to bleomycin, etoposide, or cisplatin (the drugs used to treat testicular...
Published 04/03/2014    Read More...
The shelterin protein TRF2 is essential for chromosome-end protection. Depletion of TRF2 causes chromosome end-to-end fusions, initiating genomic instability that can be cancer promoting. Paradoxically, significant increased levels of TRF2 are observed in a subset of human cancers. Experimental overexpression of TRF2 has also been shown to induce telomere shortening, through an unknown mechanism. Here we report that TRF2 overexpression results in replication stalling in duplex telomeric repeat...
Published 12/07/2015    Read More...
ELG1 is a conserved gene uncovered in a number of genetic screens in yeast aimed at identifying factors important in the maintenance of genome stability. Elg1's activity prevents gross chromosomal rearrangements, maintains proper telomere length regulation, helps repairing DNA damage created by a number of genotoxins and participates in sister chromatid cohesion. Elg1 is evolutionarily conserved, and its mammalian ortholog (also known as ATAD5) is embryonic lethal when lost in mice, acts as a...
Published 11/24/2014    Read More...
ATRX was identified over 20 years ago as the gene responsible for a rare developmental disorder characterized by α-thalassemia and intellectual disability. Similarities to the sucrose nonfermentable SNF2 type chromatin remodelers initially suggested a role in transcriptional regulation. However, over the last years, our knowledge of the epigenetic activities of ATRX has expanded steadily. Recent exciting discoveries have propelled ATRX into the limelight of chromatin and telomere biology,...
Published 12/08/2015    Read More...
Genetic mutations in microcephalin1 (MCPH1) cause primary autosomal recessive microcephaly which is characterized by a marked reduction in brain size. MCPH1 encodes a centrosomal protein with three BRCT (BRCA1 C-terminal) domains. Also, it is a key regulator of DNA repair pathway and cell cycle checkpoints. Interestingly, in the past few years, many research studies have explored the role of MCPH1, a neurodevelopmental gene in several cancers and its tumor suppressor functions have been...
Published 01/29/2014    Read More...
Telomerase contributes to cell proliferation and survival through both telomere-dependent and telomere-independent mechanisms. In this report, we discovered that endoplasmic reticulum (ER) stress transiently activates the catalytic components of telomerase (TERT) expression in human cancer cell lines and murine primary neural cells. Importantly, we show that depletion of hTERT sensitizes cells to undergo apoptosis under ER stress, whereas increased hTERT expression reduces ER stress-induced cell...
Published 10/22/2013    Read More...
More than 85% of all human cancers possess the ability to maintain chromosome ends, or telomeres, by virtue of telomerase activity. Loss of functional telomeres is incompatible with survival, and telomerase inhibition has been established in several model systems to be a tractable target for cancer therapy. As human tumour cells typically maintain short equilibrium telomere lengths, we wondered if enforced telomere elongation would positively or negatively impact cell survival. We found that...
Published 11/24/2014    Read More...
Inhibition of Mek/Erk signaling by pharmacological Mek inhibitors promotes self-renewal and pluripotency of mouse embryonic stem cells (ESCs). Intriguingly, Erk signaling is essential for human ESC self-renewal. Here we demonstrate that Erk signaling is critical for mouse ESC self-renewal and genomic stability. Erk-depleted ESCs cannot be maintained. Lack of Erk leads to rapid telomere shortening and genomic instability, in association with misregulated expression of pluripotency genes, reduced...
Published 10/19/2015    Read More...
Authors: Angela A. Rizzo, Sara S. Iachettini, Pasquale P. Zizza, Chiara C. Cingolani, Manuela M. Porru, Simona S. Artuso, Malcolm M. Stevens, Marc M. Hummersone, Annamaria A. Biroccio, Erica E. Salvati, Carlo C. Leonetti Published: 02/05/2015, Journal of experimental & clinical cancer research : CR ...
Published 02/05/2015    Read More...
Short dysfunctional telomeres are capable of fusion, generating dicentric chromosomes and initiating breakage-fusion-bridge cycles. Cells that escape the ensuing cellular crisis exhibit large-scale genomic rearrangements that drive clonal evolution and malignant progression. We demonstrate that there is an absolute requirement for fully functional DNA ligase III (LIG3), but not ligase IV (LIG4), to facilitate the escape from a telomere-driven crisis. LIG3- and LIG4-dependent alternative (A) and...
Published 08/07/2014    Read More...
TRF2 is a component of shelterin, the protein complex that protects the ends of mammalian chromosomes. TRF2 is essential for telomere capping owing to its roles in suppressing an ATM-dependent DNA damage response (DDR) at chromosome ends and inhibiting end-to-end chromosome fusions. Mice deficient for TRF2 are early embryonic lethal. However, the role of TRF2 in later stages of development and in the adult organism remains largely unaddressed, with the exception of liver, where TRF2 was found to...
Published 04/14/2014    Read More...
Aging of an individual entails a progressive decline of functional reserves and loss of homeostasis that eventually lead to mortality. This process is highly individualized and is influenced by multiple genetic, epigenetic and environmental factors. This individualization and the diversity of factors influencing aging result in a significant heterogeneity among people with the same chronological age, representing a major challenge in daily oncology practice. Thus, many factors other than mere...
Published 09/29/2013    Read More...
A higher prevalence of chronic atrophic gastritis (CAG) occurs in younger adults in Asia. We used Stomach Age to examine the different mechanisms of CAG between younger adults and elderly individuals, and established a simple model of cancer risk that can be applied to CAG surveillance....
Published 06/28/2014    Read More...
Cord blood (CB) leukocytes have inherent telomere length (TL) variation, and CB hematopoietic stem cells (HSC) can maintain high telomerase levels preventing telomere attrition in vitro. We evaluated TL changes in 13 adult double-unit CB transplant (CBT) recipients. In the 26 units, we observed a marked variation in CB TL at thaw (median, 9.99 kilobases [kb]; range, 6.85 to 13.5). All 13 patients engrafted. Of 11 engrafting with 1 unit, there was no correlation between unit dominance and TL...
Published 04/10/2015    Read More...
Cells of different organs at different ages have an intrinsic set of kinetics that dictates their behavior. Transformation into cancer cells will inherit these kinetics that determine initial cell and tumor population progression dynamics. Subject to genetic mutation and epigenetic alterations, cancer cell kinetics can change, and favorable alterations that increase cellular fitness will manifest themselves and accelerate tumor progression. We set out to investigate the emerging intratumoral...
Published 03/05/2015    Read More...
How exosomic microRNAs (miRNAs) contribute to the development of drug resistance in the context of the tumor microenvironment has not been previously described in neuroblastoma (NBL)....
Published 05/13/2015    Read More...
Cellular senescence is a physiological process of irreversible cell-cycle arrest that contributes to various physiological and pathological processes of aging. Whereas replicative senescence is associated with telomere attrition after repeated cell division, stress-induced premature senescence occurs in response to aberrant oncogenic signaling, oxidative stress, and DNA damage which is independent of telomere dysfunction. Recent evidence indicates that cellular senescence provides a barrier to...
Published 02/25/2014    Read More...
The close association between telomere length and radiosensitivity has been established by several studies. There is also a hypothesis that telomere length may be regulated by human protection of telomere 1 (hPOT1) in human carcinoma cells. In the present study, the hPOT1 level between the radioresistant Hep-2R cells and the wild-type were compared, and the results showed that the hPOT1 gene was upregulated in the radioresistant Hep-2R cell lines compared with the wild-type. This suggested that...
Published 06/05/2015    Read More...
Activation of human telomere reverse transcriptase (hTERT) is associated with the tumorigenic role of Akt. We aimed to evaluate the significance of Akt phosphorylation and hTERT expression on the prognosis of epithelial ovarian cancer (EOC). Between 2005 and 2012, 92 EOC patients treated at the Seoul National University Hospital were included in this study. Paraffin-embedded sections from the tumors of EOC patients were stained with anti-hTERT and anti-phosphorylated Akt (pAkt) antibodies....
Published 11/01/2015    Read More...
Telomeres are tandem repeat sequences present at chromosome end that are synthesized by RNA-protein enzyme called telomerase. The RNA component (TR) serves as template for telomerase reverse transcriptase (TERT) for generating telomere repeats. TERT is overexpressed in actively dividing cells including cancerous cells, absent in differentiated somatic cells whereas human telomerase RNA (hTR) is present in normal as well as in cancer cells. Telomerase overexpression in cancer cells ensures...
Published 03/25/2014    Read More...
Protection of telomeres 1 (POT1) is a telomere-binding protein, which binds to the single-stranded DNA extensions of telomeres and regulates telomere length. Different POT1 mRNA variants were examined and compared with telomere length and radiosensitivity in colon and gastric adenocarcinoma cells. POT1 production and telomere lengths were assessed using 10 human cancer cell lines by quantitative polymerase chain reaction (qPCR). POT1 mRNA levels, which were relatively stable, were significantly...
Published 03/20/2015    Read More...
The core complex of telomere-associated proteins, named the shelterin complex, plays a critical role in telomere protection and telomere length (TL) homeostasis. In this study, we have explored changes in the expression of telomere-associated genes POT1, TIN2, RAP1 and TPP1, in patients with monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). A total of 154 patients: 70 with MGUS and 84 with MM were studied. Real-time quantitative PCR was used to quantify gene...
Published 11/14/2013    Read More...
Telomerase activity is essential for human cancer cells in order to maintain telomeres and provide unlimited proliferation potential and cellular immortality. However, additional non-telomeric roles emerge for the telomerase protein TERT that can impact tumourigenesis and cancer cell properties. This review summarises our current knowledge of non-telomeric functions of telomerase in human cells, with a special emphasis on cancer cells. Non-canonical functions of telomerase can be performed...
Published 10/22/2014    Read More...
Telomerase reverse transcriptase (TERT) is the protein component of telomerase and combined with an RNA molecule, telomerase RNA component, forms the telomerase enzyme responsible for telomere elongation. Telomerase is essential for maintaining telomere length from replicative attrition and thus contributes to the preservation of genome integrity. Although diverse mouse models have been developed and studied to prove the physiological roles of telomerase as a telomere- elongating enzyme, recent...
Published 12/16/2013    Read More...
Our genome contains many G-rich sequences, which have the propensity to fold into stable secondary DNA structures called G4 or G-quadruplex structures. These structures have been implicated in cellular processes such as gene regulation and telomere maintenance. However, G4 sequences are prone to mutations particularly upon replication stress or in the absence of specific helicases. To investigate how G-quadruplex structures are resolved during DNA replication, we developed a model system using...
Published 09/05/2014    Read More...
The familial myelodysplastic (MDS)/acute leukemia (AL) predisposition syndromes are inherited disorders that lead to significantly increased lifetime risks of MDS and AL development. At present, four recognized syndromes have Clinical Laboratory Improvement Amendments--certified testing for their respective germ-line mutations: telomere biology disorders due to mutation of TERC or TERT, familial acute myeloid leukemia (AML) with mutated CEBPA, familial MDS/AML with mutated GATA2, and familial...
Published 01/27/2014    Read More...
Thyroid cancer, the commonest of endocrine malignancies, continues increasing in incidence being the 5th more prevalent cancer among women in the United States in 2012. Familial thyroid cancer has become a well-recognized, unique, clinical entity in patients with thyroid cancer originating from follicular cells, that is, nonmedullary thyroid carcinoma. Hereditary nonmedullary thyroid cancer may occur as a minor component of familial cancer syndromes (familial adenomatous polyposis, Gardner's...
Published 09/11/2014    Read More...
Chromosome 5p15.33 has been identified as a lung cancer susceptibility locus, however the underlying causal mechanisms were not fully elucidated. Previous fine-mapping studies of this locus have relied on imputation or investigated a small number of known, common variants. This study represents a significant advance over previous research by investigating a large number of novel, rare variants, as well as their underlying mechanisms through telomere length. Variants for this fine-mapping study...
Published 11/20/2015    Read More...
Authors: Wei W. Deng, Jian J. Wu, Feng F. Wang, Junko J. Kanoh, Pierre-Marie PM. Dehe, Haruna H. Inoue, Juan J. Chen, Ming M. Lei Published: 06/19/2015, Cell research PubMed Full Text...
Published 06/19/2015    Read More...
The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity,...
Published 04/28/2015    Read More...
As a DNA repair protein, flap endonuclease 1 (FEN1), a structure-specific 5' nuclease, plays pivotal roles in the maturation of Okazaki fragments, long-patch base excision repair, restarting of stalled replication forks and telomere maintenance. FEN1 possesses 5' endonuclease, 5' exonuclease and gap-endonuclease activities, which render it an essential node in maintaining genome fidelity. The aim of this study was to investigate the association between the expression level of FEN1 and gastric...
Published 02/28/2014    Read More...
Baerlocher GM, Vulto I, de Jong G, Lansdorp PM Terry Fox Laboratory, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Canada. . Nat Protoc. 2006;1(5):2365-76. Telomeres have emerged as crucial cellular elements in aging and various diseases including cancer. To measure the...
Published     Read More...
The essential role of dietary micronutrients for genome stability is well documented, yet the effect of folate deficiency or excess on telomeres is not known. Accordingly, human WIL2-NS cells were maintained in medium containing 30, 300, or 3,000 nmol/L folic acid (FA) for 42 days to test the hypothesis that chronic folate deficiency would cause telomere shortening and dysfunction. After 14 days, telomere length (TL) in FA-deficient (30 nmol/L) cultures was 26% longer than that of 3,000 nmol/L...
Published 11/19/2013    Read More...
'Cellular senescence', a term originally defining the characteristics of cultured cells that exceed their replicative limit, has been broadened to describe durable states of proliferative arrest induced by disparate stress factors. Proposed relationships between cellular senescence, tumour suppression, loss of tissue regenerative capacity and ageing suffer from lack of uniform definition and consistently applied criteria. Here, we highlight caveats in interpreting the importance of suboptimal...
Published 06/24/2015    Read More...
Both telomere length and frailty were observed to be associated with aging. Whether and to what extent telomere length is related to frailty is essentially unknown. In this cross-sectional analysis of baseline data of 3537 community-dwelling adults aged 50 to 75 years of a large German cohort study, we assessed the hypothesis that shorter telomere length might be a biological marker for frailty. Using whole blood DNA we examined mean telomere repeat copy to single gene copy number (T/S ratio)...
Published 08/21/2014    Read More...
The epigenetic clock, in particular epigenetic pre-aging quantified by the so-called DNA methylation age acceleration, has recently been suggested to closely correlate with a variety of disease phenotypes. There remains a dearth of data, however, on its association with telomere length and frailty, which can be considered major correlates of age on the genomic and clinical level, respectively....
Published 02/26/2016    Read More...
Up-regulated expression of telomerase reverse transcriptase (TERT) and subsequent maintenance of telomere length are essential in tumour development. Recent studies have implicated somatic gain-of-function mutations at the TERT promoter as one of the mechanisms that promote transcriptional activation of TERT; however, it remains unclear whether this genetic abnormality is prevalent in gynaecological neoplasms. We performed mutational analysis in a total of 525 gynaecological cancers, and...
Published 02/10/2014    Read More...
Ex vivo expansion of natural killer (NK) cells is a strategy to produce large numbers of these effector cells for immunotherapy. However, the transfer of bench-top expansion protocols to clinically applicable methods is challenging for NK cell-based therapy because of regulatory aspects and scale-up issues. Therefore, we developed an automated, large-scale NK cell expansion process....
Published 04/17/2015    Read More...
Telomere deprotection occurs during tumorigenesis and aging upon telomere shortening or loss of the telomeric shelterin component TRF2. Deprotected telomeres undergo changes in chromatin structure and elicit a DNA damage response (DDR) that leads to cellular senescence. The telomeric long noncoding RNA TERRA has been implicated in modulating the structure and processing of deprotected telomeres. Here, we characterize the human TERRA transcriptome at normal and TRF2-depleted telomeres and...
Published 10/31/2014    Read More...
The Ku heterodimer serves in the initial step in repairing DNA double-strand breaks by the non-homologous end-joining pathway. Besides this key function, Ku also plays a role in other cellular processes including telomere maintenance. Inactivation of Ku can lead to DNA repair defects and telomere aberrations. In model organisms where Ku has been studied, inactivation can lead to DNA repair defects and telomere aberrations. In general Ku deficient mutants are viable, but a notable exception to...
Published 02/04/2015    Read More...
Chiral recognition of DNA molecules is important because DNA chiral transition and its different conformations are involved in a series of important life events. Among them, polymorphic human telomere DNA has attracted great interests in recent years because of its important roles in chromosome structural integrity. In this report, we examine the short-term effect of chiral metallo-supramolecular complex enantiomers treatment on tumor cells, and find that a zinc-finger-like alpha helical chiral...
Published 01/09/2014    Read More...
Glioblastoma (GBM) is an invariably fatal brain tumor in which a small subpopulation of self-renewable glioma stem cells (GSCs) contributes to tumor propagation and relapse. Targeting GSCs could therefore have a significant clinical impact for GBM. Telomestatin is a naturally-occurring compound that preferentially impairs GSC growth by perturbing transcription and inducing a DNA damage response. Telomestatin stabilizes G-quadruplexes (G4s), which are guanine-rich four-strand nucleic acid...
Published 02/01/2016    Read More...
Telomere is protected by its G-quadruplex, T-loop structure, telomerase, and binding protein complex. Protein POT1 (protection of telomeres 1) is one subunit of telomere binding protein complex Shelterin. POT1 acts as a regulator of telomerase-dependent telomere length, and it can help telomere to form D-loop structure to stabilize telomere. POT1 protects telomere ends from ATR-dependent DNA damage response as well....
Published 03/12/2014    Read More...
The present study aims to investigate whether gastrokine 1 (GKN1) induces senescence and apoptosis in gastric cancer cells by regulating telomere length and telomerase activity. Telomere length, telomerase activity, and hTERT expression decreased significantly in AGSGKN1 and MKN1GKN1 cells. Both stable cell lines showed increased expression of TRF1 and reduced expression of the hTERT and c-myc proteins. In addition, TRF1 induced a considerable decrease in cell growth, telomerase activity, and...
Published 12/20/2014    Read More...
It is widely believed that females have longer telomeres than males, although results from studies have been contradictory....
Published 12/21/2013    Read More...
Cellular senescence is a cell cycle arrest accompanied by high expression of cyclin dependent kinase inhibitors which counteract overactive growth signals, which serves as a tumor suppressive mechanism. Senescence can be a result of telomere shortening (natural or replicative senescence) or DNA damage resulting from exogenous stressors (induced senescence). Here, we performed gene expression profiling through RNA-seq of replicative senescence, adriamycin-induced senescence, H2O2-induced...
Published 01/06/2015    Read More...
Mutations in ATRX (alpha thalassemia/mental retardation syndrome X-linked), a chromatin-remodeling protein, are associated with the telomerase-independent ALT (alternative lengthening of telomeres) pathway of telomere maintenance in several types of cancer, including human gliomas. In telomerase-positive glioma cells, we found by immunofluorescence that ATRX localized not far from the chromosome ends but not exactly at the telomere termini. Chromatin immunoprecipitation (ChIP) experiments...
Published 06/08/2015    Read More...
Recent genome-wide association studies (GWAS) have identified a number of chromosomal regions associated with the risk of lung cancer. Of these regions, single-nucleotide polymorphisms (SNPs), especially rs2736100 located in the telomerase reverse transcriptase (TERT) gene show unique and significant association with non-small cell lung cancer (NSCLC) in a few subpopulations including women, nonsmokers, East Asians and those with adenocarcinoma. Recent studies have also linked rs2736100 with a...
Published 09/14/2015    Read More...
Medullary thyroid carcinomas (MTCs) exhibit telomerase activation in strong association with shorter patient survival. To understand the background of telomerase activation we quantified TERT copy numbers and TERT promoter methylation in 42 MTCs and normal thyroid references. Gain of TERT was demonstrated by quantitative PCR in 5/39 sporadic MTC. Increased methylation index (MetI) for CpG methylation at the TERT promoter was found in sporadic MTCs (P < 0.0001) and in MEN 2 associated MTCs (P =...
Published 02/08/2016    Read More...
Hispanics are the largest nonwhite ethnic group in the US population, and they have higher incidence and mortality rates for gastric cancer (GC) than whites and Asians. Studies have identified several genetic susceptibility loci and intermediate phenotypic biomarkers for GC in whites and Asians. No studies have evaluated genetic susceptibility and intermediate phenotypic biomarkers in Hispanics....
Published 06/24/2014    Read More...
Epidemiological studies have reported inconsistent associations between telomere length (TL) and risk for various cancers. These inconsistencies are likely attributable, in part, to biases that arise due to post-diagnostic and post-treatment TL measurement. To avoid such biases, we used a Mendelian randomization approach and estimated associations between nine TL-associated SNPs and risk for five common cancer types (breast, lung, colorectal, ovarian and prostate cancer, including subtypes)...
Published 07/02/2015    Read More...
The variability in the association of host innate immune response to Hepatitis C virus (HCV) infection requires ruling out the possible role of host KIR and HLA genotypes in HCV-related disorders: therefore, we therefore explored the relationships between KIR/HLA genotypes and chronic HCV infection (CHC) as they relate to the risk of HCV-related hepatocarcinoma (HCC) or lymphoproliferative disease progression....
Published 02/20/2015    Read More...
The progression from normal cells to invasive pancreatic ductal adenocarcinoma (PDAC) requires the accumulation of multiple inherited or acquired mutations. Activating point mutations in the KRAS oncogene are prevalent in pancreatic cancer and result in the stimulation of several pathways including the RAF-mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase pathway. Other genetic alterations, including telomere shortening and the inactivation of tumor suppressor genes such...
Published 01/21/2014    Read More...
Recent evidence from several relatively small nested case-control studies in prospective cohorts shows an association between longer telomere length measured phenotypically in peripheral white blood cell (WBC) DNA and increased lung cancer risk. We sought to further explore this relationship by examining a panel of seven telomere-length associated genetic variants in a large study of 5,457 never-smoking female Asian lung cancer cases and 4,493 never-smoking female Asian controls using data from...
Published 12/29/2014    Read More...
Telomere-related genes play an important role in carcinogenesis and progression of prostate cancer (PCa). It is not fully understood whether genetic variations in telomere-related genes are associated with development and progression in PCa patients....
Published 08/04/2015    Read More...
Recent studies have suggested polymorphisms in the TERT and CLPTM1L region are associated with carcinogenesis of many distinct cancer types, including gastrointestinal cancers. However, the contribution of polymorphisms in the TERT and CLPTM1L gene region to gastrointestinal stromal tumors (GISTs) risk is still unknown. We tested the six tagSNPs on TERT and CLPTM1L region with GIST risk, using a population-based, two-stage, case-control study in 2,000 subjects. Functional validation was...
Published 10/27/2015    Read More...
Twenty years ago, the first familial melanoma susceptibility gene, CDKN2A, was identified. Two years later, another high-penetrance gene, CDK4, was found to be responsible for melanoma development in some families. Progress in identifying new familial melanoma genes was subsequently slow; however, with the advent of next-generation sequencing, a small number of new high-penetrance genes have recently been uncovered. This approach has identified the lineage-specific oncogene MITF as a...
Published 01/05/2015    Read More...
Authors: Kirsty K. Minton Published: 03/11/2015, Nature reviews. Molecular cell biology PubMed Full Text...
Published 03/11/2015    Read More...
Telomeres are nucleoprotein structures at the ends of eukaryotic chromosomes that protect them from degradation, end-to-end fusions, and fragility. In mammals, telomeres are composed of TTAGGG tandem repeats bound by a protein complex called shelterin, which has fundamental roles in the regulation of telomere protection and length. The telomeric repeat binding factor 1 (TERF1 or TRF1) is one of the components of shelterin and has been shown to be essential for telomere protection. Telomeric...
Published 01/01/2015    Read More...
Telomere length is a heritable trait, and short telomere length has been associated with multiple chronic diseases. We investigated the relationship of relative leukocyte telomere length with cardiometabolic risk and performed the first genome-wide association study and meta-analysis to identify variants influencing relative telomere length in a population of Sikhs from South Asia....
Published 05/03/2014    Read More...
Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5 × 10(-8)), as did 2 previously...
Published 08/03/2015    Read More...
FEN1 has key roles in Okazaki fragment maturation during replication, long patch base excision repair, rescue of stalled replication forks, maintenance of telomere stability and apoptosis. FEN1 may be dysregulated in breast and ovarian cancers and have clinicopathological significance in patients. We comprehensively investigated FEN1 mRNA expression in multiple cohorts of breast cancer [training set (128), test set (249), external validation (1952)]. FEN1 protein expression was evaluated in 568...
Published 05/13/2014    Read More...
Oesophageal adenocarcinoma (EAC) incidence is rapidly increasing in Western countries. A better understanding of EAC underpins efforts to improve early detection and treatment outcomes. While large EAC exome sequencing efforts to date have found recurrent loss-of-function mutations, oncogenic driving events have been underrepresented. Here we use a combination of whole-genome sequencing (WGS) and single-nucleotide polymorphism-array profiling to show that genomic catastrophes are frequent in...
Published 10/29/2014    Read More...
Somatic copy number alterations (SCNAs) play an important role in carcinogenesis. However, the impact of genomic architecture on the global patterns of SCNAs in cancer genomes remains elusive. In this work, we conducted multiple linear regression (MLR) analyses of the pooled SCNA data from The Cancer Genome Atlas (TCGA) Pan-Cancer project. We performed MLR analyses for 11 individual cancer types and three different kinds of SCNAs-amplifications and deletions, telomere-bound and interstitial...
Published 01/04/2016    Read More...
Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a...
Published 04/11/2015    Read More...
Telomere length is considered to be a risk factor in adults due to its proved association with cancer incidence and mortality. Since newborn present a wide interindividual variation in mean telomere length, it is relevant to demonstrate if these differences in length can act also as an early risk indicator. To answer this question, we have measured the mean telomere length of 74 samples of cord blood from newborns and studied its association with the basal genetic damage, measured as the...
Published 03/12/2014    Read More...
Authors: Sarah S. Seton-Rogers Published: 03/19/2015, Nature reviews. Cancer PubMed Full Text...
Published 03/19/2015    Read More...
A unique feature of both human herpesvirus 6A and B (HHV-6A and B) among human herpesviruses is their ability to integrate into chromosomal telomeres. In some individuals integrated viral genomes are present in the germ-line and result in the vertical transmission of HHV-6; however, little is known about the disease associations of germ-line transmitted, chromosomally integrated HHV-6 (ciHHV-6). Recent publications suggest that HHV-6 is associated with classical Hodgkin lymphoma (cHL). Here we...
Published 11/10/2014    Read More...
Germline CDKN2A mutations occur in 40 % of 3-or-more case melanoma families while mutations of CDK4, BAP1, and genes involved in telomere function (ACD, TERF2IP, POT1), have also been implicated in melanomagenesis. Mutation of the promoter of the telomerase reverse transcriptase (TERT) gene (c.-57 T>G variant) has been reported in one family. We tested for the TERT promoter variant in 675 multicase families wild-type for the known high penetrance familial melanoma genes, 1863 UK...
Published 01/04/2016    Read More...
Gliomas are the most common brain tumor, with several histological subtypes of various malignancy grade. The genetic contribution to familial glioma is not well understood. Using whole exome sequencing of 90 individuals from 55 families, we identified two families with mutations in POT1 (p.G95C, p.E450X), a member of the telomere shelterin complex, shared by both affected individuals in each family and predicted to impact DNA binding and TPP1 binding, respectively. Validation in a separate...
Published 12/07/2014    Read More...
Authors: Published: 06/26/2014, Cancer discovery PubMed Full Text...
Published 06/26/2014    Read More...
Adipose tissues play important role in the pathophysiology of obesity-related diseases including type 2 diabetes (T2D). To describe gene expression patterns and functional pathways in obesity-related T2D, we performed global transcript profiling of omental adipose tissue (OAT) in morbidly obese individuals with or without T2D....
Published 10/27/2015    Read More...
Telomerase is a specialized nucleoprotein enzyme complex that maintains the telomere length. The telomerase reverse transcriptase (TERT) is the catalytically active component of the telomerase complex. In humans, the protein component (hTERT) and RNA component (hTR) are found to differentially express in cancer cells. In contrast to differentiated cells, most of the cancer cells overexpress hTERT, which is needed to maintain the proliferative potential of cells. The overexpression of telomerase...
Published 06/11/2014    Read More...
Genomic instability and reduced glutathione S-transferase (GST) activity have been identified as potential risk factors for malignant complications in celiac disease (CD). In this study, we assessed the possible influence of GST polymorphisms on genome instability phenotypes in a genetically characterised group of celiac patients from previous studies....
Published 02/22/2014    Read More...
A large body of evidence supports a key role for telomere dysfunction in carcinogenesis due to the induction of chromosomal instability. To study telomere shortening in precancerous pancreatic lesions, we measured telomere lengths using quantitative fluorescence in situ hybridization in the normal pancreatic duct epithelium, pancreatic intraepithelial neoplasias (PanINs), and cancers. The materials employed included surgically resected pancreatic specimens without cancer (n = 33) and with...
Published 02/06/2015    Read More...
Clonospheres formed due to modified culture conditions are often studied for their stem cell like behaviour. The main objective of the current study is to compare the stem cell markers and link it to hTERT levels by monitoring their quantitative gene expression as they are potential targets for new generation combination therapeutics....
Published 05/06/2015    Read More...
Although BRCA1 function is essential for maintaining genomic integrity in all cell types, it is unclear why increased risk of cancer in individuals harbouring deleterious mutations in BRCA1 is restricted to only a select few tissues. Here we show that human mammary epithelial cells (HMECs) from BRCA1-mutation carriers (BRCA1(mut/+)) exhibit increased genomic instability and rapid telomere erosion in the absence of tumour-suppressor loss. Furthermore, we uncover a novel form of...
Published 06/24/2015    Read More...
Cyclic AMP (cAMP) activates both protein kinase A (PKA) and guanine-nucleotide exchange factor exchange protein directly activated by CAMP (EPAC)-mediated Ras-related Protein1 (RAP1) GTPase that regulates various cellular functions including cell migration. Herein, we investigated whether cAMP-mediated PKA and EPAC1/RAP1 pathways differentially control HeLa cervical cancer cell migration. Although HeLa cell migration was reduced by dibutyryl-cAMP, we observed an increase in cAMP/PKA,...
Published 07/01/2014    Read More...
Telomeric repeat binding factor 2 (TRF2) is a well-studied shelterin complex subunit that plays a major role in the protection of chomosome ends and the prevention of the telomere-associated DNA damage response. We show that heat shock induces the dissociation of TRF2 from telomeres in human primary and cancer cell cultures. TRF2 is not simply degraded in response to heat shock, but redistributed thoughout the nucleoplasm. This TRF2 depletion/redistribution does not initiate the DNA damage...
Published 02/06/2014    Read More...
Naevus count is the strongest risk factor for melanoma. Body Mass Index (BMI) has been linked to melanoma risk. In this study, we investigate the link between naevus count and height, weight and bone mineral density (BMD) in the TwinsUK cohort (N = 2119). In addition we adjusted for leucocyte telomere length (LTL) as LTL is linked to both BMD and naevus count. Naevus count was positively associated with height (p = 0.001) but not with weight (p = 0.187) despite adjusting for age and twin...
Published 01/22/2015    Read More...
Telomere length, shape and function depend on a complex of six core telomere-associated proteins referred to as the telosome or shelterin complex. We here demonstrate that the isoform β2 of the heregulin family of growth factors (HRGβ2) is a novel interactor of the telosome/shelterin complex in human telomeres. Analysis of protein-protein interactions using a high-throughput yeast two-hybrid (Y2H) screen identified RAP1, the only telomere protein that is conserved from yeasts to mammals, as a...
Published 12/03/2015    Read More...
The growth factor heregulin (HRG) promotes breast cancer (BC) tumorigenesis and metastasis and differentially modulates BC cell responses to DNA-damaging agents via its dual extracellular and nuclear localization. Given the central role of telomere dysfunction to drive carcinogenesis and to alter the chemotherapeutic profile of transformed cells, we hypothesized that an unanticipated nuclear function of HRG might be to regulate telomere length. Engineered overexpression of the HRGβ2 isoform in...
Published 12/03/2015    Read More...
The non-histone chromatin binding protein High Mobility Group AT-hook protein 2 (HMGA2) plays important roles in the repair and protection of genomic DNA in embryonic stem cells and cancer cells. Here we show that HMGA2 localizes to mammalian telomeres and enhances telomere stability in cancer cells. We present a novel interaction of HMGA2 with the key shelterin protein TRF2. We found that the linker (L1) region of HMGA2 contributes to this interaction but the ATI-L1-ATII molecular region of...
Published 01/18/2016    Read More...
to investigate p16(INK4a) and p14(ARF) tumor suppressor gene methylation status, determine telomere length and assess the importance of these epigenetic and genetic parameters in the development of pleomorphic adenoma and carcinoma ex pleomorphic adenoma of the parotid salivary glands....
Published 08/22/2015    Read More...
Meningiomas are common central nervous system tumors. The World Health Organization (WHO) defines three grades, predictive of the risk of recurrence. These tumors can relapse frequently and sometimes undergo malignant transformation. Maintenance of telomere length is a key process in malignant progression, and mutations in TERT promoter have recently been identified in various types of cancer. We sequenced the TERT promoter in 85 meningiomas from 73 patients. We found a high incidence of TERT...
Published 12/23/2013    Read More...
Telomerase inactivation causes loss of the male germline in worms, fish, and mice, indicating a conserved dependence on telomere maintenance in this cell lineage. Here, using telomerase reverse transcriptase (Tert) reporter mice, we found that very high telomerase expression is a hallmark of undifferentiated spermatogonia, the mitotic population where germline stem cells reside. We exploited these high telomerase levels as a basis for purifying undifferentiated spermatogonia using...
Published 11/19/2015    Read More...
To investigate frequent quantitative alterations of intestinal-type gastric adenocarcinoma....
Published 11/04/2014    Read More...
Telomere maintenance is crucial in carcinogenesis and tumor progression. The results of a previous study from the authors indicated that infection with high-risk human papillomavirus (HR-HPV) types 16, 18, and 58 was a risk factor for esophageal squamous cell carcinoma (ESCC) in the Shantou region of China. In the current study, the authors explored the association between HR-HPV infection, telomere length (TL), and DNA methylation and their significance in the prognosis of patients with ESCC....
Published 05/19/2014    Read More...
Authors: Carrie C. Printz Published: 03/07/2014, Cancer PubMed Full Text...
Published 03/07/2014    Read More...
A telomere-triggered isothermal exponential amplification-based DNAzyme biosensor is developed for highly sensitive detection of telomerase in cancer cells even at the single-cell level. This biosensor can be further applied for the screening of telomerase inhibitors for anticancer drug development....
Published 01/09/2014    Read More...
Objective Elevated homocysteine (HC) levels and/or shortened telomere length (TL) are associated with adverse medical conditions. Our objective is to investigate the relationship between HC and TL in cord blood leukocytes of newborns. Study Design This is a nested study from a prospective cohort from 2011 to 2012 in pregnant women admitted for delivery at a university-affiliated hospital. Cord blood was collected at delivery and genomic DNA was analyzed using quantitative PCR. The...
Published 12/21/2015    Read More...
Telomeres protect the ends of linear chromosomes against loss of genetic information and inappropriate processing as damaged DNA and are therefore crucial to the maintenance of chromosome integrity. In addition to providing a pathway for genome-wide DNA repair, homologous recombination (HR) plays a key role in telomere replication and capping. Consistent with this, the genomic instability characteristic of HR-deficient cells and tumours is driven in part by telomere dysfunction. Here, we discuss...
Published 11/29/2014    Read More...
Hoyeraal-Hreidarsson syndrome is a dyskeratosis congenita-related telomere biology disorder that presents in infancy with intrauterine growth retardation, immunodeficiency, and cerebellar hypoplasia in addition to the triad of nail dysplasia, skin pigmentation, and oral leukoplakia. Individuals with Hoyeraal-Hreidarsson syndrome often develop bone marrow failure in early childhood. Germline mutations in DKC1, TERT, TINF2, RTEL1, ACD, or PARN cause about 60% of individuals with...
Published 12/19/2015    Read More...
Germline mutations in telomere biology genes cause dyskeratosis congenita (DC), an inherited bone marrow failure and cancer predisposition syndrome. DC is a clinically heterogeneous disorder diagnosed by the triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia; Hoyeraal-Hreidarsson syndrome (HH), a clinically severe variant of DC, also includes cerebellar hypoplasia, immunodeficiency, and intrauterine growth retardation. Approximately 70% of DC cases are associated with a...
Published 09/18/2014    Read More...
Human RecQ4 (hRecQ4) affects cancer and aging but is difficult to study because it is a fusion between a helicase and an essential replication factor. Budding yeast Hrq1 is homologous to the disease-linked helicase domain of RecQ4 and, like hRecQ4, is a robust 3'-5' helicase. Additionally, Hrq1 has the unusual property of forming heptameric rings. Cells lacking Hrq1 exhibited two DNA damage phenotypes: hypersensitivity to DNA interstrand crosslinks (ICLs) and telomere addition to DNA breaks....
Published 01/16/2014    Read More...
We have previously shown that hsa-miR-520d-5p can convert cancer cells into induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs) via a dedifferentiation by a demethylation mechanism....
Published 12/18/2014    Read More...
Mammalian CST (CTC1-STN1-TEN1) is a telomere-associated complex that functions in telomere duplex replication and fill-in synthesis of the telomeric C-strand following telomerase action. CST also facilitates genome-wide replication recovery after HU-induced fork stalling by increasing origin firing. CTC1 and STN1 were originally isolated as a DNA polymerase α stimulatory factor. Here we explore how CST abundance affects recovery from drugs that cause different types of DNA damage and...
Published 01/09/2015    Read More...
Hoyeraal-Hreidarsson syndrome (HHS) is a severe form of Dyskeratosis congenita characterized by developmental defects, bone marrow failure and immunodeficiency and has been associated with telomere dysfunction. Recently, mutations in Regulator of Telomere ELongation helicase 1 (RTEL1), a helicase first identified in Mus musculus as being responsible for the maintenance of long telomeres, have been identified in several HHS patients. Here we show that RTEL1 is required for the export and the...
Published 01/27/2015    Read More...
Dyskerin is a pseudouridine (ψ) synthase involved in fundamental cellular processes including uridine modification in rRNA and small nuclear RNA and telomere stabilization. Dyskerin functions are altered in X-linked dyskeratosis congenita (X-DC) and cancer. Dyskerin's role in rRNA pseudouridylation has been suggested to underlie the alterations in mRNA translation described in cells lacking dyskerin function, although relevant direct evidences are currently lacking. Our purpose was to establish...
Published 05/01/2015    Read More...
Human telomerase reverse transcriptase (hTERT) contributes to tumor progression as well as maintaining telomere length, however, the mechanism by which hTERT promotes invasiveness is not yet completely understood. This study aims to unravel the precise mechanism through which hTERT promotes cancer invasion. We established an hTERT-overexpressed immortalized cell line (IHOK/hTERT). In orthotopic xenograft models, IHOK/hTERT harbors higher tumorigenicity than IHOK/Control. IHOK/hTERT showed much...
Published 10/28/2015    Read More...
Telomerase is the ribonucleoprotein enzyme that catalyzes the extension of telomeric DNA in eukaryotes. Recent work has begun to reveal key aspects of the assembly of the human telomerase complex, its intracellular trafficking involving Cajal bodies, and its recruitment to telomeres. Once telomerase has been recruited to the telomere, it appears to undergo a separate activation step, which may include an increase in its repeat addition processivity. This review covers human telomerase...
Published 06/11/2015    Read More...
Telomeres are the protective end-complexes at the termini of eukaryotic chromosomes. Telomere attrition can lead to potentially maladaptive cellular changes, block cell division, and interfere with tissue replenishment. Recent advances in the understanding of human disease processes have clarified the roles of telomere biology, especially in diseases of human aging and in some aging-related processes. Greater overall telomere attrition predicts mortality and aging-related diseases in inherited...
Published 01/20/2016    Read More...
Telomeres consist of long nucleotide repeats and a protein complex at chromosome ends essential for chromosome stability. Telomeres shorten with each cell division and thus are markers of cellular age. Dyskeratosis congenita (DC) is a cancer-prone inherited bone marrow failure syndrome caused by germ-line mutations in key telomere biology genes that result in extremely short telomeres. The triad of nail dysplasia, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC but highly...
Published 07/04/2014    Read More...
Linear chromosomes are stabilized by telomeres, but the presence of short dysfunctional telomeres triggers cellular senescence in human somatic tissues, thus contributing to ageing. Approximately 1% of the population inherits a chromosomally integrated copy of human herpesvirus 6 (CI-HHV-6), but the consequences of integration for the virus and for the telomere with the insertion are unknown. Here we show that the telomere on the distal end of the integrated virus is frequently the shortest...
Published 09/19/2013    Read More...
Telomeric RNAs (TERRAs) are UUAGGG repeat-containing RNAs that are transcribed from the subtelomere towards the telomere. The precise genomic origin of TERRA has remained elusive. Using a whole-genome RNA-sequencing approach, we identify novel mouse transcripts arising mainly from the subtelomere of chromosome 18, and to a lesser extend chromosome 9, that resemble TERRA in several key aspects. Those transcripts contain UUAGGG-repeats and are heterogeneous in size, fluctuate in abundance in a...
Published 09/03/2014    Read More...
To date, telomere research in fungi has mainly focused on Saccharomyces cerevisiae and Schizosaccharomyces pombe, despite the fact that both yeasts have degenerated telomeric repeats in contrast to the canonical TTAGGG motif found in vertebrates and also several other fungi....
Published 11/17/2015    Read More...
Cellular senescence is a barrier to tumorigenesis in normal cells, and tumor cells undergo senescence responses to genotoxic stimuli, which is a potential target phenotype for cancer therapy. However, in this setting, mixed-mode responses are common with apoptosis the dominant effect. Hence, more selective senescence inducers are required. Here we report a machine learning-based in silico screen to identify potential senescence agonists. We built profiles of differentially affected biological...
Published 10/18/2015    Read More...
Human chromosomes terminate in telomeres, repetitive DNA sequences bound by the shelterin complex. Shelterin protects chromosome ends, prevents recognition by the DNA damage machinery, and recruits telomerase. A patch of amino acids, termed the TEL-patch, on the OB-fold domain of the shelterin component TPP1 is essential to recruit telomerase to telomeres. In contrast, the site on telomerase that interacts with the TPP1 OB-fold is not well defined. In this study, we identify...
Published 10/01/2014    Read More...
Accumulating evidence suggests that RNAs interacting with genomic regions play important roles in the regulation of genome functions, including X chromosome inactivation and gene expression. However, to our knowledge, no non-biased methods of identifying RNAs that interact with a specific genomic region have been reported. Here, we used enChIP-RNA-Seq, a combination of engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) and RNA sequencing (RNA-Seq), to perform a...
Published 04/13/2015    Read More...
The pentacyclic acridinium salt RHPS4 (3,11-difluoro-6,8,13-trimethyl-8H-quino [4,3,2-kl] acridinium methosulfate, compound 1) is one of the most interesting DNA G-quadruplex binding molecules due to its high efficacy in tumor cell growth inhibition both in in vitro models and in vivo against human tumor xenografts in combination with conventional chemotherapeutics. Despite compound 1 having desirable chemical and pharmaceutical properties, its potential as a therapeutic agent is compromised by...
Published 10/06/2014    Read More...
Telomerase is a ribonucleoprotein that maintains the ends of linear chromosomes in most eukaryotes. Loss of telomerase activity results in shortening of telomeric DNA and eventually a specific G2/M cell-cycle arrest known as senescence. In humans, telomere shortening occurs during aging, while inappropriate activation of telomerase is associated with approximately 90% of cancers. Previous studies have identified several classes of noncoding RNAs (ncRNA) also associated with aging-related...
Published 01/20/2016    Read More...
Friedreich ataxia (FRDA) is a progressive inherited neurodegenerative disorder caused by mutation of the FXN gene, resulting in decreased frataxin expression, mitochondrial dysfunction and oxidative stress. A recent study has identified shorter telomeres in FRDA patient leukocytes as a possible disease biomarker....
Published 06/10/2015    Read More...
Telomerase reactivation and immortalization are critical for human carcinoma progression. However, little is known about the mechanisms controlling this crucial step, due in part to the paucity of experimentally tractable model systems that can examine human epithelial cell immortalization as it might occur in vivo. We achieved efficient non-clonal immortalization of normal human mammary epithelial cells (HMEC) by directly targeting the 2 main senescence barriers encountered by cultured HMEC....
Published 12/09/2014    Read More...
Human telomerase reverse transcriptase (hTERT) is a catalytic enzyme required for telomere elongation. In this study, we investigated the safety and immunogenicity of an hTERT-derived peptide (hTERT461) as a vaccine and characterized the hTERT-specific T cell responses induced. Fourteen hepatocellular carcinoma (HCC) patients were enrolled in the study. The hTERT-derived peptide was emulsified in incomplete Freund's adjuvant and administered via subcutaneous immunization three times biweekly....
Published 05/14/2015    Read More...
Human umbilical endothelial cells (HUVECs) have been proven to be effective in tumor anti-angiogenesis but the mechanism remained to be further demonstrated. The restricted ability of HUVECs to proliferate in vitro also limits their application on a large scale. In the present study, we immortalized HUVECs with hTERT genes by lentiviral infection and explored the antitumor immunity of hTERT-expressing HUVECs (HUVEC-TERTs). Results showed that HUVEC-TERTs maintained high telomere activity and...
Published 09/21/2015    Read More...
Recently, we observed that telomeres of BRCA1/2 mutation carriers were shorter than those of controls or sporadic breast cancer patients, suggesting that mutations in these genes might be responsible for this event. Given the contradictory results reported in the literature, we tested whether other parameters, such as chemotherapy, could be modifying telomere length (TL). We performed a cross-sectional study measuring leukocyte TL of 266 sporadic breasts cancer patients treated with first-line...
Published 12/21/2014    Read More...
Telomeres, which protect the ends of chromosomes, are shortened in several hematologic malignancies, often with adverse prognostic implications, but their effect on prognosis of classic and variant hairy cell leukemia (HCL and HCLv) has not been reported. HCL/HCLv genomic DNA from 46 patients was studied by PCR to determine the ratio of telomere to single copy gene number (T/S). T/S was unrelated to diagnosis of HCL or HCLv (p=0.27), but shorter T/S was associated with unmutated immunoglobulin...
Published 09/24/2015    Read More...
Telomere length (TL) shortened occurs in colorectal carcinogenetic process. Our objective is to determine if it is only a local fact or there are alterations in normal colon cells and in other body cells....
Published 04/14/2015    Read More...
Adipose tissue-derived stromal cells (ASCs) natively reside in a relatively low-oxygen tension (i.e., hypoxic) microenvironment in human body. Low oxygen tension (i.e., in situ normoxia), has been known to enhance the growth and survival rate of ASCs, which, however, may lead to the risk of tumourigenesis. Here, we investigated the tumourigenic potential of ASCs under their physiological condition to ensure their safe use in regenerative therapy. Human ASCs isolated from subcutaneous fat were...
Published 01/23/2015    Read More...
In this issue, Soudet et al. show that the actual mechanistic details of the chromosomal end-replication problem, the principle linking telomere biology with human cellular senescence and cancer, match previous predictions almost to the nucleotide....
Published 03/24/2014    Read More...
Checkpoint kinase 2 (CHK2) is a downstream effector of the DNA damage response (DDR). Dysfunctional telomeres, either owing to critical shortening or disruption of the shelterin complex, activate a DDR, which eventually results in cell cycle arrest, senescence and/or apoptosis. Successive generations of telomerase-deficient (Terc) mice show accelerated aging and shorter lifespan due to tissue atrophy and impaired organ regeneration associated to progressive telomere shortening. In contrast, mice...
Published 06/12/2014    Read More...
Maintenance of telomere length and structure is essential for cell survival. Telomere synthesis is mediated by the ribonucleoprotein telomerase in 90% of cancer cells, and is regulated mainly by transcription of the human telomerase reverse transcriptase subunit, hTERT. However, transcriptome analysis reveals complex splicing patterns and to date, twenty-two alternatively-spliced hTERT mRNAs have been reported, yet their functions have not been fully elucidated. The best characterized hTERT...
Published 01/09/2014    Read More...
Telomere dysfunction is important in carcinogenesis, and recently, stathmin and elongation factor 1α (EF1α) were reported to be up-regulated in telomere dysfunctional mice....
Published 05/31/2014    Read More...
The molecular basis to overcome therapeutic resistance to treat glioblastoma remains unclear. The anti-apoptotic b cell lymphoma 2 (BCL2) gene is associated with treatment resistance, and is transactivated by the paired box transcription factor 8 (PAX8). In earlier studies, we demonstrated that increased PAX8 expression in glioma cell lines was associated with the expression of telomerase. In this current study, we more extensively explored a role for PAX8 in gliomagenesis....
Published 03/06/2014    Read More...
There is a considerable resurgence of interest in the role of aerobic glycolysis in cancer; however, increased glycolysis is frequently viewed as a consequence of oncogenic events that drive malignant cell growth and survival. Here we provide evidence that increased glycolytic activation itself can be an oncogenic event in a physiologically relevant 3D culture model. Overexpression of glucose transporter type 3 (GLUT3) in nonmalignant human breast cells activated known oncogenic signaling...
Published 12/09/2013    Read More...
Development and validation of robust molecular biomarkers has so far been limited in melanoma research. In this paper we used a large population-based cohort to replicate two published gene signatures for melanoma classification. We assessed the signatures prognostic value and explored their biological significance by correlating them with factors known to be associated with survival (vitamin D) or etiological routes (nevi, sun sensitivity and telomere length). Genomewide microarray gene...
Published 06/01/2015    Read More...
A library of 5-methylindolo[3,2-c]quinolones (IQc) with various substitution patterns of alkyldiamine side chains were evaluated for G-quadruplex (G4) binding mode and efficiency. Fluorescence resonance energy transfer melting assays showed that IQcs with a positive charge in the heteroaromatic nucleus and two weakly basic side chains are potent and selective human telomeric (HT) and gene promoter G4 stabilizers. Spectroscopic studies with HT G4 as a model showed that an IQc stabilizing complex...
Published 03/26/2015    Read More...
The relationships between telomerase and telomeres represent attractive targets for new anticancer agents. Here, we report that the nucleoside analogue 6-thio-2'-deoxyguanosine (6-thio-dG) is recognized by telomerase and is incorporated into de novo-synthesized telomeres. This results in modified telomeres, leading to telomere dysfunction, but only in cells expressing telomerase. 6-Thio-dG, but not 6-thioguanine, induced telomere dysfunction in telomerase-positive human cancer cells and...
Published 12/16/2014    Read More...
To analyze whether leukocyte telomere length (LTL) is impaired in women with polycystic ovary syndrome (PCOS)....
Published 11/20/2014    Read More...
Mindfulness-based stress reduction (MBSR) reduces symptoms of depression, anxiety, and fear of recurrence among breast cancer (BC) survivors. However, the effects of MBSR (BC) on telomere length (TL) and telomerase activity (TA), known markers of cellular aging, psychological stress, and disease risk, are not known. This randomized, wait-listed, controlled study, nested within a larger trial, investigated the effects of MBSR (BC) on TL and TA. BC patients (142) with Stages 0-III cancer who had...
Published 01/30/2014    Read More...
To investigate the functional consequences of rs2736100 polymorphism in telomere length and examine its link to gastric cancer risk....
Published 08/28/2015    Read More...
Telomerase is a ribonucleoprotein enzyme that is necessary for overcoming telomere shortening in human germ and stem cells. Mutations in telomerase or other telomere-maintenance proteins can lead to diseases characterized by depletion of hematopoietic stem cells and bone marrow failure (BMF). Telomerase localization to telomeres requires an interaction with a region on the surface of the telomere-binding protein TPP1 known as the TEL patch. Here, we identify a family with aplastic anemia and...
Published 09/09/2014    Read More...
Inherited chromosomally integrated human herpesvirus-6 (iciHHV-6) results in the germ-line transmission of the HHV-6 genome. Every somatic cell of iciHHV-6+ individuals contains the HHV-6 genome integrated in the telomere of chromosomes. Whether having iciHHV-6 predisposes humans to diseases remains undefined. DNA from 19,597 participants between 40 and 69 years of age were analyzed by quantitative PCR (qPCR) for the presence of iciHHV-6. Telomere lengths were determined by qPCR. Medical...
Published 06/15/2015    Read More...
Germline testing for familial predisposition to myeloid malignancies is becoming more common with the recognition of multiple familial syndromes. Currently, Clinical Laboratory Improvement Amendments-approved testing exists for the following: familial platelet disorder with propensity to acute myeloid leukemia, caused by mutations in RUNX1; familial myelodysplastic syndrome/acute myeloid leukemia with mutated GATA2; familial acute myeloid leukemia with mutated CEBPA; and the inherited bone...
Published 08/12/2014    Read More...
Tankyrases (TNKS) play roles in Wnt signaling, telomere homeostasis, and mitosis, offering attractive targets for anticancer treatment. Using unbiased combination screening in a large panel of cancer cell lines, we have identified a strong synergy between TNKS and MEK inhibitors (MEKi) in KRAS-mutant cancer cells. Our study uncovers a novel function of TNKS in the relief of a feedback loop induced by MEK inhibition on FGFR2 signaling pathway. Moreover, dual inhibition of TNKS and MEK leads to...
Published 04/18/2014    Read More...
Human telomerase is absent in most normal tissues, but is abnormally activated in all major cancer cells. Telomerase enables tumor cells to maintain telomere length, allowing indefinite replicative capacity. Albeit not sufficient in itself to induce neoplasia, telomerase is believed to be necessary for cancer cells to grow without limit. Studies using an antisense oligonucleotide (ASODN) to the RNA component of telomerase or human telomerase reverse transcriptase (hTERT) demonstrate that...
Published 01/08/2016    Read More...
Though anti-metastatic function of non-metastatic 2 (NME2) has been implicated in multiple cancers, mechanisms of metastases control by NME2 are not clearly understood. Recent observations indicating the involvement of telomerase, the ribonucleoprotein required for telomere synthesis, in metastatic outcome are interesting. Notably, though the role of telomerase dysfunction in tumorigenesis is relatively well studied, involvement in metastasis progression is poorly understood. Recent findings...
Published 12/31/2014    Read More...
Telomerase, a ribonucleoprotein enzyme mainly consisted of a catalytic protein subunit human telomerase reverse transcriptase (hTERT) and a human telomerase RNA component, is responsible for maintaining telomeres. Telomerase over-expression correlates significantly with tumors and is a prognostic marker. However, telomerase over-expression in breast cancers and the effect of telomerase inhibition as a candidate cancer therapy are unknown....
Published 08/07/2014    Read More...
The apoptotic actions of p53 require its phosphorylation by a family of phosphoinositide-3-kinase-related-kinases (PIKKs), which include DNA-PKcs and ATM. These kinases are stabilized by the TTT (Tel2, Tti1, Tti2) cochaperone family, whose actions are mediated by CK2 phosphorylation. The inositol pyrophosphates, such as 5-diphosphoinositol pentakisphosphate (IP7), are generated by a family of inositol hexakisphosphate kinases (IP6Ks), of which IP6K2 has been implicated in p53-associated cell...
Published 03/20/2014    Read More...
Synthesis of inositol pyrophosphates through activation of Kcs1 plays an important role in the signalling response required for cell cycle progression after mating pheromone arrest. Overexpression of Kcs1 doubled the level of inositol pyrophosphates when compared to wild type cells and 30 min following the release from α-factor block further increase in inositol pyrophosphates was observed, which resulted that cells overexpressing Kcs1 reached G2/M phase earlier than wild type cells. Similar...
Published 09/26/2015    Read More...
Adrenocortical carcinomas (ACCs) are aggressive cancers originating in the cortex of the adrenal gland. Despite overall poor prognosis, ACC outcome is heterogeneous. We performed exome sequencing and SNP array analysis of 45 ACCs and identified recurrent alterations in known driver genes (CTNNB1, TP53, CDKN2A, RB1 and MEN1) and in genes not previously reported in ACC (ZNRF3, DAXX, TERT and MED12), which we validated in an independent cohort of 77 ACCs. ZNRF3, encoding a cell surface E3 ubiquitin...
Published 04/20/2014    Read More...
Genome-wide association studies (GWASs) have characterized 13 loci associated with melanoma, which only account for a small part of melanoma risk. To identify new genes with too small an effect to be detected individually but which collectively influence melanoma risk and/or show interactive effects, we used a two-step analysis strategy including pathway analysis of genome-wide SNP data, in a first step, and epistasis analysis within significant pathways, in a second step. Pathway analysis,...
Published 05/26/2015    Read More...
Molecular profiling of hepatocellular carcinoma (HCC) is enabling the advancement of novel approaches to disease diagnosis and management. Accurate prognosis prediction in HCC is specially critical. Clinical staging systems for HCC support clinical decision-making (e.g., BCLC algorithm) might be complemented by molecular-based information in the near future. Molecular signatures derived from tumour and non-tumour samples are associated with patient recurrence an outcome. Single nucleotide...
Published 08/23/2014    Read More...
Head and neck squamous cell carcinoma (HNSCC) is a very heterogeneous disease resulting in huge differences in the treatment response. New individualized therapy strategies including molecular targeting might help to improve treatment success. In order to identify potential targets, we developed a HNSCC radiochemotherapy cell culture model of primary HNSCC cells derived from two different patients (HN1957 and HN2092) and applied an integrative microRNA (miRNA) and mRNA analysis in order to gain...
Published 09/02/2015    Read More...
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL). BLV can interact with telomerase and inhibits telomere shortening, contributing in leukemogenesis and tumour induction. The role of telomerase in BLV-induced lymphosarcoma and aging has been extensively studied. To date, the interaction of both BLV and aging on telomerase mis-regulation have, however, not been investigated. In the present study, telomerase activity in BLV positive and negative cows was compared...
Published 02/11/2015    Read More...
Thymoquinone (TQ) has been documented to possess chemo-preventive and chemotherapeutic antitumor effects. Studies reported that TQ inhibits the growth of cancer cells in animal models, culture and xenografted tumors. Molecular mechanisms underlying these anticancer effects were attributed to inductions of cell cycle arrest, apoptosis, oxidative damage of cellular macromolecules, blockade of tumor angiogenesis and inhibitions in migration, invasion and metastasis of cancer cells. On the other...
Published 10/24/2014    Read More...
G-quadruplex structures are attractive targets for the development of anticancer drugs, as their formation in human telomere could impair telomerase activity, thus inducing apoptosis in cancer cells. Vast majority of G-quadruplex binding molecules have been designed and synthesized. Ruthenium complexes have also been reported to induction or stabilization of G-quadruplex structure of human telomeric sequence, whereas most of them generally promote the formation of antiparallel or hybrid-type...
Published 01/07/2014    Read More...
Telomere length maintenance is a requisite feature of cellular immortalization and a hallmark of human cancer. While most human cancers express telomerase activity, ∼10%-15% employ a recombination-dependent telomere maintenance pathway known as alternative lengthening of telomeres (ALT) that is characterized by multitelomere clusters and associated promyelocytic leukemia protein bodies. Here, we show that a DNA double-strand break (DSB) response at ALT telomeres triggers long-range movement...
Published 09/27/2014    Read More...
Werner syndrome (WS) is a progeroid or premature aging syndrome characterized by early onset of age-related pathologies and cancer. The average life expectancy of affected people is 52.8 years and tends to increase. The major causes of death are malignancy and myocardial infarction. Increased telomere attrition and decay are thought to play a causative role in the clinical and pathological manifestations of the disease. Although telomere length, with or without germline mutation, is known to be...
Published 12/16/2015    Read More...
Recent research indicates that hundreds of thousands of G-rich sequences within the human genome have the potential to form secondary structures known as G-quadruplexes. Telomeric regions, consisting of long arrays of TTAGGG/AATCCC repeats, are among the most likely areas in which these structures might form. Since G-quadruplexes assemble from certain G-rich single-stranded sequences, they might arise when duplex DNA is unwound such as during replication. Coincidentally, these bulky structures...
Published 01/14/2014    Read More...
The purpose of the work was to investigate telomere length (TL) and mechanisms involved in TL maintenance in individual neuroblastoma (NB) tumors. Primary NB tumors from 102 patients, ninety Italian and twelve Spanish, diagnosed from 2000 to 2008 were studied. TL was investigated by quantitative fluorescence in situ hybridization (IQ-FISH) that allows to analyze individual cells in paraffin-embedded tissues. Fluorescence intensity of chromosome 2 centromere was used as internal control to...
Published 04/30/2015    Read More...
Telomerase is activated in human papillomavirus (HPV) positive cervical cancer and targeting telomeres offers a novel anticancer therapeutic strategy. In this study, the telomere targeting properties, the cytotoxic as well as the pro-apoptotic effects of hexane (IV-HE) and dichloromethane (IV-DF) fractions from Inula viscosa L. extracts were investigated on human cervical HeLa and SiHa cancer cells. Our data demonstrate that IV-HE and IV-DF extracts were able to inhibit cell growth in HeLa and...
Published 01/15/2016    Read More...
Transcription factors (TFs) and microRNAs (miRNAs) can jointly regulate transcriptional networks in the form of recurrent circuits or motifs. A motif can be divided into a feedforward loop (FFL) and a feedback loop (FBL). Incoherent FFLs have been the recent focus due to their potential to dampen gene expression noise in maintaining physiological norms. However, a cell is not only able to manage noise but also able to exploit it during development or tumorigenesis to initiate radical...
Published 10/29/2014    Read More...
Telomerase, a unique ribonucleoprotein complex that contains the telomerase reverse transcriptase (TERT), the telomerase RNA component (TERC) and the TERC-binding protein dyskerin, is required for continued cell proliferation in stem cells and cancer cells. Here we identify SRSF11 as a novel TERC-binding protein that localizes to nuclear speckles, subnuclear structures that are enriched in pre-messenger RNA splicing factors. SRSF11 associates with active telomerase enzyme through an interaction...
Published 08/18/2015    Read More...
In the fission yeast Schizosaccharomyces pombe, centromeric heterochromatin is maintained by an RNA-directed RNA polymerase complex (RDRC) and the RNA-induced transcriptional silencing (RITS) complex in a manner that depends on the generation of short interfering RNA. In association with the telomerase RNA component (TERC), the telomerase reverse transcriptase (TERT) forms telomerase and counteracts telomere attrition, and without TERC, TERT has been implicated in the regulation of...
Published 02/18/2014    Read More...
The DNA damage response (DDR) orchestrates DNA repair and halts cell cycle. If damage is not resolved, cells can enter into an irreversible state of proliferative arrest called cellular senescence. Organismal ageing in mammals is associated with accumulation of markers of cellular senescence and DDR persistence at telomeres. Since the vast majority of the cells in mammals are non-proliferating, how do they age? Are telomeres involved? Also oncogene activation causes cellular senescence due to...
Published 08/11/2014    Read More...
Senescence was originally identified by the finite lifespan of normal cells that is a consequence of telomere shortening with each cycle of DNA replication. Cells undergoing replicative senescence display pronounced morphological and biochemical changes such as flattening and/or enlargement, increases in p21(WAF1) and/or p16(INK4A), a senescence-associated secretory phenotype, and often senescence-associated heterochromatic foci. Senescence also occurs in tumor cells in response to various forms...
Published 02/17/2016    Read More...
Authors: Carmen M CM. Martin-Ruiz, Duncan D. Baird, Laureline L. Roger, Petra P. Boukamp, Damir D. Krunic, Richard R. Cawthon, Martin M MM. Dokter, Pim P. Van Der Harst, Sofie S. Bekaert, Tim T. De Meyer, Goran G. Roos, Ulrika U. Svenson, Veryan V. Codd, Nilesh J NJ. Samani, Liane...
Published 09/24/2015    Read More...
Since the identification of Nm23 (NME1, NME/NM23 nucleoside diphosphate kinase 1) as the first non-metastatic protein, a great deal of research on members of the NME family of proteins has focused on roles in processes implicated in carcinogenesis and particularly their regulation of cellular motility and the process of metastatic spread. To date, there are ten identified members of this family of genes, and these can be dichotomized into groups both taxonomically and by the presence or absence...
Published 11/01/2014    Read More...
Standard treatment for glioblastoma comprises surgical resection, chemotherapy with temozolomide, and radiotherapy. Nevertheless, majority of glioblastoma patients have recurrence from resistance to the cytotoxic conventional therapies. We examined combinational effects of KML001, an arsenic compound targeting telomeres of chromosomes with temozolomide or irradiation, in glioblastoma cell lines and xenograft models, to overcome the therapeutic limitation of chemoradiation therapy for...
Published 09/10/2014    Read More...
A recent study published in Science reveals the mechanism and biological importance of DNA damage response abrogation in mitotic cells....
Published 05/09/2014    Read More...
In this issue of Cancer Cell, Ramamoorthy and Smith report that cancer cells that maintain their chromosome ends through alternative lengthening of telomeres (ALT) display persistent sister telomere cohesion. This delayed resolution of sister telomere cohesion depends upon the loss of ATRX and its histone-sequestering function and is associated with increased recombination between sister telomeres....
Published 09/16/2015    Read More...
Telomerase activation and an alternative lengthening of telomeres (ALT) mechanism are two telomere-lengthening cancer cell survival mechanisms elicited by both chemo- and/or radiotherapy. Telomere lengthening interferes with cell lethality and results in the immortalization of cancer cells. To counteract these mechanisms, we developed a drug delivery system (DDS) consisting of a polymeric implant that is inserted directly into tumors. The DDS releases, continuously and gradually, a cationic...
Published 07/30/2014    Read More...
To investigate the effects of TRF2 depletion on radiosensitivity in both the telomerase-positive cell lines (A549) and alternative lengthening of telomere (ALT) cell lines (U2OS)....
Published 01/22/2015    Read More...
A hallmark of cancer cells is an activated telomere maintenance mechanism, which allows prolonged survival of the malignant cells. In more than 80% of tumours, telomeres are elongated by the enzyme telomerase, which adds de novo telomere repeats to the ends of chromosomes. Cancer cells are also characterized by expression of active LINE-1 elements (L1s, long interspersed nuclear elements-1). L1 elements are abundant retrotransposons in the eukaryotic genome that are primarily known for...
Published 03/23/2015    Read More...
Hodgkin lymphoma (HL) and Burkitt lymphoma are both germinal center-derived B-cell lymphomas. To assess the consequences of permanent latent membrane protein 1 (LMP1) expression as observed in tumor cells of Epstein-Barr virus (EBV) -associated HL, we analyzed 3-dimensional (3D) telomere dynamics and measured the expression of shelterin proteins at the transcriptional and translational level and their topographic distribution in the EBV-negative Burkitt cell line BJAB stably transfected with an...
Published 01/07/2015    Read More...
Significant improvement in the understanding of mesenchymal stem cell biology paved the way to their clinical use. Human lipoaspirates derived from mesenchymal stem cells (adipose-derived stem cells) continue to draw the attention of researchers in the field of basic and applied research due to their regenerative, reparative, angiogenic, antiapoptotic, and immunosuppressive properties, all of which collectively point out their therapeutic potential. There is still, however, a need for further...
Published 12/25/2014    Read More...
Leiomyosarcoma is an aggressive soft tissue sarcoma with poor patient survival. Recently, it was shown that 53% to 62% of leiomyosarcomas use the alternative lengthening of telomeres (ALT) as their telomere maintenance mechanism. The molecular basis of this mechanism has not been elucidated. Studies of pancreatic neuroendocrine tumor have suggested that the inactivation of either α-thalassemia/mental retardation syndrome X-linked (ATRX) or death domain-associated (DAXX) protein is associated...
Published 01/14/2015    Read More...
In the absence of telomerase, telomeres progressively shorten with every round of DNA replication, leading to replicative senescence. In telomerase-deficient Saccharomyces cerevisiae, the shortest telomere triggers the onset of senescence by activating the DNA damage checkpoint and recruiting homologous recombination (HR) factors. Yet, the molecular structures that trigger this checkpoint and the mechanisms of repair have remained elusive. By tracking individual telomeres, we show that telomeres...
Published 01/06/2014    Read More...
Authors: Emma R ER. Drašar, Jie J. Jiang, Kate K. Gardner, Jo J. Howard, Tom T. Vulliamy, Nisha N. Vasavda, Swee Lay SL. Thein Published: 02/14/2014, British journal of haematology PubMed Full Text...
Published 02/14/2014    Read More...
Authors: Jian J. Gu Published: 05/09/2015, EBioMedicine PubMed Full Text...
Published 05/09/2015    Read More...
Telomeres are regions at the ends of chromosomes that maintain chromosomal structural integrity and genomic stability. In studies of mainly older, white populations, shorter leukocyte telomere length (LTL) is associated with cardiometabolic risk factors and increased risks of mortality and coronary heart disease (CHD). On average, African Americans (AfAm) have longer LTL than whites, but the LTL-CHD relationship in AfAm is unknown. We investigated the relationship of LTL with CHD and mortality...
Published 08/06/2015    Read More...
Elevated mammographic density (MD) is a strong breast cancer risk factor but the mechanisms underlying the association are poorly understood. High MD and breast cancer risk may reflect cumulative exposures to factors that promote epithelial cell division. One marker of cellular replicative history is telomere length, but its association with MD is unknown. We investigated the relation of telomere length, a marker of cellular replicative history, with MD and biopsy diagnosis....
Published 10/30/2015    Read More...
This study examined the association between leukocyte telomere length--a marker of cell aging--and mortality in a nationally representative sample of US adults ages 50-84 years. We also examined moderating effects of age, sex, race/ethnicity, and education....
Published 06/04/2015    Read More...
Mastocytosisis a rare disease associated with chronic symptoms related to mast cell mediator release. Patients with mastocytosis display high level of negative emotionality such as depression and stress sensibility. Brain mast cells are mainly localized in the diencephalon, which is linked to emotion regulatory systems. Negative emotionality has been shown to be associated with telomere shortening. Taken together these observations led us to hypothesize that mast cells activity could be involved...
Published 08/01/2013    Read More...
Several studies have examined leukocyte telomere length (LTL) as a possible predictor for cancer at various organ sites. The hypothesis originally motivating many of these studies was that shorter telomeres would be associated with an increase in cancer risk; the results of epidemiologic studies have been inconsistent, however, and suggested positive, negative, or null associations. Two studies have addressed the association of LTL in relation to pancreatic cancer risk and the results are...
Published 08/07/2014    Read More...
Telomeres located at the ends of chromosomes are involved in genomic stability and play a key role in various cancers and age-related diseases. Age-related macular degeneration (AMD) is a late-onset, age-associated progressive neurodegenerative disease, which includes the geographic atrophy (GA) subtype and the choroidal neovascularization (CNV) subtype. To better understand how leukocyte telomere length (LTL) is related to AMD, we conducted an association study in 197 AMD patients and 259...
Published 06/04/2015    Read More...
Leukocyte telomere length (LTL) is related to the aging of somatic cells. We hypothesized that LTL is inversely associated with mortality in elderly men. LTL was measured in 2744 elderly men (mean age 75.5, range 69-81years) included in the prospective population-based MrOS-Sweden study. Mortality data were obtained from national health registers with no loss of follow-up. During the follow-up (mean 6.0years), 556 (20%) of the participants died. Using Cox proportional hazards regression, tertile...
Published 04/30/2014    Read More...
Recent genome-wide association studies (GWAS) have identified eleven leukocyte telomere length (LTL)-related single nucleotide polymorphisms (SNPs). Since LTL has been associated with risk of many malignancies, LTL-related SNPs may contribute to cancer susceptibility. To test this hypothesis in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), we genotyped these eleven LTL-related SNPs in a case-control set including 1186 HBV-related HCC cases, 508 chronic HBV carriers and 1308...
Published 11/03/2014    Read More...
Epidemiological studies have demonstrated that leukocyte telomere length is associated with the developing risk of various malignancies, including glioma. However, its prognostic value in glioma patients has never been investigated....
Published 02/22/2015    Read More...
Children with congenital heart disease are exposed by repeated imaging to ionizing radiation, which may have important implications for lifetime health risks. Leukocyte telomere length (LTL), a reliable biomarker of genomic instability, is associated with increased risk of cancer and cardiovascular disease. We investigated LTL in grown-up patients with CHD (GUCHs) and a positive history of medical radiation exposure as well as the influence of functional polymorphisms of genes involved in DNA...
Published 11/23/2015    Read More...
With the identification of mutations in the conserved telomere maintenance component 1 (CTC1) gene as the cause of Coats plus (CP) disease, it has become evident that leukoencephalopathy with calcifications and cysts (LCC) is a distinct genetic entity....
Published 01/09/2014    Read More...
We present a clinical, neuro-radiological and genetic study on a family with members suffering from an autosomal dominantly inherited syndrome characterised by epilepsy, cerebral calcifications and cysts, bone abnormalities; progressive neuro-cognitive deterioration and paranasal sinusitis. This syndrome shares several features with leukoencephalopathy with calcifications and cysts also called Labrune syndrome and the condition of cerebroretinal microangiopathy with calcifications and cysts...
Published 07/18/2014    Read More...
Senescence is a non-proliferative state reached by normal cells in response to various stresses, including telomere uncapping, oxidative stress or oncogene activation. In previous reports, we have highlighted that senescent human epidermal keratinocytes have two opposite outcomes: either they die by autophagic programmed cell death or they evade in the form of neoplastic postsenescence emergent (PSNE) cells. Herein, we show that partially reducing macroautophagy in senescent keratinocytes using...
Published 12/18/2014    Read More...
Carriers of germline mutations in the TP53 gene, encoding the cell-cycle regulator and tumour suppressor p53, have a markedly increased risk of cancer-related morbidity and mortality during both childhood and adulthood, and thus require appropriate and effective cancer risk management. However, the predisposition of such patients to multiorgan tumorigenesis presents a specific challenge for cancer risk management programmes. Herein, we review the clinical implications of germline mutations in...
Published 03/18/2014    Read More...
Telomeres play a fundamental role in the maintenance of genomic integrity at a cellular level, and average leukocyte telomere length (LTL) has been proposed as a biomarker of organismal aging. However, studies tracking LTL across the entire life course of individuals are lacking. Here, we examined lifelong patterns of variation in LTL among four birth cohorts of female Soay sheep (Ovis aries) that were longitudinally monitored and sampled from birth to death. Over the first 4 months of life,...
Published 11/02/2015    Read More...
Ataxia telangiectasia mutated (ATM) is a key gene in DNA double-strand break (DSB), and therefore, most of its disabling genetic alterations play an important initiative role in many types of cancer. However, the exact role of ATM gene and its epigenetic alterations, especially promoter methylation in different grades of brain tumors, remains elusive. The current study was conducted to query possible correlations among methylation statue of ATM gene, ATM/ retinoblastoma (RB) protein expression,...
Published 08/27/2014    Read More...
Dyskeratosis congenita (DC) is a multisystem disease caused by genetic mutations that result in defective telomere maintenance. Herein, we describe a 17-year-old patient with severe DC, manifested by bone marrow failure, severe immunodeficiency, and enterocolitis requiring prolonged infliximab therapy, who developed fatal hepatic failure caused by an aggressive, infiltrating hepatic angiosarcoma. Although DC patients have known increased risk of developing liver failure and multiple types of...
Published 04/25/2014    Read More...
During aging, progressive deleterious changes increase the risk of disease and death. Prominent molecular hallmarks of aging are genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, cellular senescence, stem cell exhaustion, and altered intercellular communication. Long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes, including age-related diseases like cancer, cardiovascular pathologies, and neurodegenerative disorders....
Published 01/14/2015    Read More...
Telomere length has been associated with the development of cancer. Studies have shown that shorter telomere length may be related to a decreased risk of cutaneous melanoma. Furthermore, deregulation of the telomere-maintaining gene complexes, has been related to this oncogenic process. Some variants in these genes seem to be correlated with a change in telomerase expression. We examined the effect of 10 single nucleotide polymorphisms (SNPs) in the TERT gene (encoding telomerase), one SNP in...
Published 10/31/2014    Read More...
In the field of cell-based therapy and regenerative medicine, clinical application is the ultimate goal. However, one major concern is: does in vitro manipulation during culture expansion increases tumourigenicity risk on the prepared cells? Therefore, the aim of this study was to investigate the effect of long-term in vitro expansion on human adipose-derived stem cells (ASCs). The ASCs were harvested from lipo-aspirate samples and cultured until passage 20 (P20), using standard culture...
Published 05/02/2012    Read More...
Telomere maintenance has emerged as an important molecular feature with impacts on adult glioma susceptibility and prognosis. Whether longer or shorter leukocyte telomere length (LTL) is associated with glioma risk remains elusive and is often confounded by the effects of age and patient treatment. We sought to determine if genotypically-estimated LTL is associated with glioma risk and if inherited single nucleotide polymorphisms (SNPs) that are associated with LTL are glioma risk factors. Using...
Published 01/05/2016    Read More...
Aberrant telomere length measured in blood has been associated with increased risk of several cancer types. In the field of hereditary non-polyposis colorectal cancer (CRC), and more particularly in Lynch syndrome, caused by germline mutations in the mismatch repair (MMR) genes, we recently found that cancer-affected MMR gene mutation carriers had shorter telomeres and more pronounced shortening of telomere length with age than controls and unaffected MMR gene mutation carriers. Here we evaluate...
Published 02/03/2014    Read More...
Quadruplex nucleic acids can be formed at the ends of eukaryotic chromosomes. Their formation and stabilisation by appropriate small molecules can be used as a means of inhibiting the telomere maintenance functions of telomerase in human cancer cells. The crystal structures have been determined for a number of complexes between these small molecules and human telomeric DNA and RNA quadruplexes. The detailed structural characteristics of these complexes have been surveyed here and the variations...
Published 05/04/2015    Read More...
The chromatin-remodeler ATRX is frequently lost in cancer cells that use ALT (alternative lengthening of telomeres) for telomere maintenance, but its function in telomere recombination is unknown. Here we show that loss of ATRX suppresses the timely resolution of sister telomere cohesion that normally occurs prior to mitosis. In the absence of ATRX, the histone variant macroH2A1.1 binds to the poly(ADP-ribose) polymerase tankyrase 1, preventing it from localizing to telomeres and resolving...
Published 09/16/2015    Read More...
Sporadic pancreatic neuroendocrine tumors (pNETs) are rare and genetically heterogeneous. Chromosome instability (CIN) has been detected in pNETs from patients with poor outcomes, but no specific genetic factors have been associated with CIN. Mutations in death domain-associated protein gene (DAXX) or ATR-X gene (ATRX) (which both encode proteins involved in chromatin remodeling) have been detected in 40% of pNETs, in association with activation of alternative lengthening of telomeres. We...
Published 10/19/2013    Read More...
Nuclear lamin B1 (LMNB1) constitutes one of the major structural proteins in the lamina mesh. We silenced the expression of LMNB1 by RNA interference in the colon cancer cell line DLD-1 and showed a dramatic redistribution of H3K27me3 from the periphery to a more homogeneous nuclear dispersion. In addition, we observed telomere attrition and an increased frequency of micronuclei and nuclear blebs. By 3D-FISH analyses, we demonstrated that the volume and surface of chromosome territories were...
Published 04/14/2014    Read More...
Lung transplantation is the only intervention that prolongs survival in idiopathic pulmonary fibrosis (IPF). Telomerase mutations are the most common identifiable genetic cause of IPF, and at times, the telomere defect manifests in extrapulmonary disease such as bone marrow failure. The relevance of this genetic diagnosis for lung transplant management has not been examined. We gathered an international series of telomerase mutation carriers who underwent lung transplant in the U.S.A., Australia...
Published 05/15/2014    Read More...
Telomere length has been linked to risk of common diseases, including cancer, and has previously been proposed as a biomarker for cancer risk. Germline BRCA1 and BRCA2 mutations predispose to breast, ovarian, and other cancer types....
Published 03/18/2014    Read More...
Appropriate repair of DNA lesions and the inhibition of DNA repair activities at telomeres are crucial to prevent genomic instability. By fuelling the generation of genetic alterations and by compromising cell viability, genomic instability is a driving force in cancer and ageing. Here we identify MAD2L2 (also known as MAD2B or REV7) through functional genetic screening as a novel factor controlling DNA repair activities at mammalian telomeres. We show that MAD2L2 accumulates at uncapped...
Published 03/23/2015    Read More...
Hypoxic areas are a common feature of rapidly growing malignant tumors and their metastases and are typically spatially heterogeneous. Hypoxia has a strong impact on tumor cell biology and contributes to tumor progression in multiple ways. To date, only a few molecular key players in tumor hypoxia, such as hypoxia-inducible factor-1 (HIF-1), have been discovered. The distribution of biomolecules is frequently heterogeneous in the tumor volume and may be driven by hypoxia and HIF-1α....
Published 06/04/2015    Read More...
Targeting telomerase is a potential cancer management strategy given that it allows unlimited cellular replication in the majority of cancers. Dysfunctional telomeres are recognized as double-strand breaks. However, the status of DNA repair response pathways following telomerase inhibition is not well understood in human breast cancer cells. Here, we evaluated the effects of MST-312, a chemically modified derivative from tea catechin, epigallocatechin gallate, on telomere dynamics and DNA damage...
Published 05/27/2015    Read More...
Replication forks frequently stall at regions of the genome that are difficult to replicate or contain lesions that cause replication blockage. An important mechanism for the restart of a stalled fork involves endonucleolytic cleavage that can lead to fork restoration and replication progression. Here, we show that the structure-selective endonuclease MUS81-EME2 is responsible for fork cleavage and restart in human cells. The MUS81-EME2 protein, whose actions are restricted to S phase, is also...
Published 05/09/2014    Read More...
Patients with major depressive disorder (MDD) have an increased onset risk of aging-related somatic diseases such as heart disease, diabetes, obesity and cancer. This suggests mechanisms of accelerated biological aging among the depressed, which can be indicated by a shorter length of telomeres. We examine whether MDD is associated with accelerated biological aging, and whether depression characteristics such as severity, duration, and psychoactive medication do further impact on biological...
Published 11/12/2013    Read More...
Loss of function of cyclin E1 or E2, important regulators of the mitotic cell cycle, yields viable mice, but E2-deficient males display reduced fertility. To elucidate the role of E-type cyclins during spermatogenesis, we characterized their expression patterns and produced additional deletions of Ccne1 and Ccne2 alleles in the germline, revealing unexpected meiotic functions. While Ccne2 mRNA and protein are abundantly expressed in spermatocytes, Ccne1 mRNA is present but its protein is...
Published 02/27/2014    Read More...
Telomeres are tandem repeats of sequences present at the end of the chromosomes that maintain chromosomal integrity. After repeated cell division, telomeres shorten to a critical level, triggering replicative senescence or apoptosis, which is a key determinant of cellular aging. Short telomeres also contribute to genome instability and are a hallmark of many cancers. There are several methods for estimating telomere length (TL) from extracted DNA samples. Southern blot is accurate but requires a...
Published 12/04/2014    Read More...
Telomeres play a fundamental role in the protection of chromosomal DNA and in the regulation of cellular senescence. Recent work in human epidemiology and evolutionary ecology suggests adult telomere length (TL) may reflect past physiological stress and predict subsequent morbidity and mortality, independent of chronological age.Several different methods have been developed to measure TL, each offering its own technical challenges. The aim of this review is to provide an overview of the...
Published 03/02/2014    Read More...
Telomere-led rapid prophase movements (RPMs) in meiotic prophase have been observed in diverse eukaryote species. A shared feature of RPMs is that the force that drives the chromosomal movements is transmitted from the cytoskeleton, through the nuclear envelope, to the telomeres. Studies in mice suggested that dynein movement along microtubules is transmitted to telomeres through SUN1/KASH5 nuclear envelope bridges to generate RPMs. We monitored RPMs in mouse seminiferous tubules using 4D...
Published 04/16/2015    Read More...
Lymphocytes are unique among cells in that they undergo programmed DNA breaks and translocations, but that special property predisposes them to chromosomal instability (CIN), a cardinal feature of neoplastic lymphoid cells that manifests as whole chromosome- or translocation-based aneuploidy. In several lymphoid malignancies translocations may be the defining or diagnostic markers of the diseases. CIN is a cornerstone of the mutational architecture supporting lymphoid neoplasia, though it is...
Published 05/26/2015    Read More...
In ageing populations many patients have multiple diseases characterised by acceleration of the normal ageing process. Better understanding of the signalling pathways and cellular events involved in ageing shows that these are characteristic of many chronic degenerative diseases, such as chronic obstructive pulmonary disease (COPD), chronic cardiovascular and metabolic diseases, and neurodegeneration. Common mechanisms have now been identified in these diseases, which show evidence of cellular...
Published 01/22/2015    Read More...
To examine whether adherence to the Mediterranean diet was associated with longer telomere length, a biomarker of aging....
Published 12/02/2014    Read More...
The association of an increased risk to develop melanoma in patients with prostate cancer has recently been confirmed....
Published 02/22/2014    Read More...
Therapeutic use of multipotent mesenchymal stromal stem cells (MSC) is a promising venue for a large number of degenerative diseases and cancer. Their availability from many different adult tissues, ease of expansion in culture, the ability to avoid immune rejection and their homing ability, are some of the properties of MSCs that make them a great resource for therapy. However, the challenges and risks for cell-based therapies are multifaceted. The blessing of cell culture expansion also comes...
Published 03/07/2014    Read More...
The senescent cardiac phenotype is accompanied by changes in mitochondrial function and biogenesis causing impairment in energy provision. The relationship between myocardial senescence and Pim kinases deserves attention because Pim-1 kinase is cardioprotective, in part, by preservation of mitochondrial integrity. Study of the pathological effects resulting from genetic deletion of all Pim kinase family members could provide important insight about cardiac mitochondrial biology and the aging...
Published 06/10/2014    Read More...
DNA secondary structures are largely advantageous for numerous cellular processes but can pose specific threats to the progression of the replication machinery and therefore genome duplication and cell division. A number of specialized enzymes dismantle these structures to allow replication fork progression to proceed faithfully. In this review, we discuss the in vitro and in vivo data that has lead to the identification of these enzymes in eukaryotes, and the evidence that suggests that they...
Published 05/09/2014    Read More...
Methylation of N-terminal arginines of the shelterin component TRF2 is important for cellular proliferation. While TRF2 is found at telomeres, where it plays an essential role in maintaining telomere integrity, little is known about the cellular localization of methylated TRF2. Here we report that the majority of methylated TRF2 is resistant to extraction by high salt buffer and DNase I treatment, indicating that methylated TRF2 is tightly associated with the nuclear matrix. We show that...
Published 05/15/2014    Read More...
Idiopathic pulmonary fibrosis (IPF) is a degenerative disease of the lungs with an average survival post-diagnosis of 2-3 years. New therapeutic targets and treatments are necessary. Mutations in components of the telomere-maintenance enzyme telomerase or in proteins important for telomere protection are found in both familial and sporadic IPF cases. However, the lack of mouse models that faithfully recapitulate the human disease has hampered new advances. Here, we generate two independent mouse...
Published 07/02/2015    Read More...
The activation of telomere maintenance mechanisms, which rely on telomerase reactivation or on a recombination-based process known as alternative lengthening of telomeres, guarantees a limitless proliferative potential to human tumor cells. To date, the molecular underpinnings that drive the activation of telomere maintenance mechanisms during tumorigenesis are poorly understood, but there are indications that complex signaling networks might be involved. Since telomerase activity has been...
Published 10/22/2014    Read More...
Group psychosocial interventions including mindfulness-based cancer recovery (MBCR) and supportive-expressive group therapy (SET) can help breast cancer survivors decrease distress and influence cortisol levels. Although telomere length (TL) has been associated with breast cancer prognosis, the impact of these two interventions on TL has not been studied to date....
Published 11/03/2014    Read More...
This article reviews evidence regarding effects of psychotherapy on overall cancer survival time. Special emphasis is given to research on adverse effects of depression on cancer survival, breast cancer, and mediating psychophysiological pathways linking psychosocial support to longer survival....
Published 08/26/2013    Read More...
Centrosomes direct spindle morphogenesis to assemble a bipolar mitotic apparatus to enable error-free chromosome segregation and preclude chromosomal instability (CIN). Amplified centrosomes, a hallmark of cancer cells, set the stage for CIN, which underlies malignant transformation and evolution of aggressive phenotypes. Several studies report CIN and a tumorigenic and/or aggressive transformation in mitochondrial DNA (mtDNA)-depleted cells. Although several nuclear-encoded proteins are...
Published 05/05/2014    Read More...
Double strand break (DSB) repair is suppressed during mitosis because RNF8 and downstream DNA damage response (DDR) factors, including 53BP1, do not localize to mitotic chromatin. Discovery of the mitotic kinase-dependent mechanism that inhibits DSB repair during cell division was recently reported. It was shown that restoring mitotic DSB repair was detrimental, resulting in repair dependent genome instability and covalent telomere fusions. The telomere DDR that occurs naturally during cellular...
Published 08/29/2014    Read More...
Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with...
Published 02/22/2016    Read More...
Telomeres are guanine-rich sequences at the end of chromosomes which shorten during each replication event and trigger cell cycle arrest and/or controlled death (apoptosis) when reaching a threshold length. The enzyme telomerase replenishes the ends of telomeres and thus prolongs the life span of cells, but also causes cellular immortalisation in human cancer. G-quadruplex (G4) stabilising drugs are a potential anticancer treatment which work by changing the molecular structure of telomeres to...
Published 04/26/2013    Read More...
Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined...
Published 01/30/2016    Read More...
The interaction of the anthraquinone derivative mitoxantrone, a semisynthetic anti-cancer drug with two non-planar side chains, with heptamer G-quadruplex d(TTAGGGT)4 , which contains the human telomere DNA sequence, was evaluated by differential scanning calorimetry, fluorescence Job plotting, absorption, and NMR and CD spectroscopy. Binding led to thermal stabilization of DNA (ΔTm =13-20 °C). The spectra revealed that two mitoxantrone molecules bind externally at two sites of the DNA...
Published 02/16/2016    Read More...
Ageing is the inevitable time-dependent decline in physiological organ function that eventually leads to death. Age is a major risk factor for many of the most common medical conditions, such as cardiovascular disease, cancer, diabetes and Alzheimer's disease. This study reviews currently known hallmarks of ageing and their clinical implications....
Published 01/16/2016    Read More...
Mutations in genes encoding proteins required for telomere structure, replication, repair and length maintenance are associated with several debilitating human genetic disorders. These complex telomere biology disorders (TBDs) give rise to critically short telomeres that affect the homeostasis of multiple organs. Furthermore, genome instability is often a hallmark of telomere syndromes, which are associated with increased cancer risk. Here, we summarize the molecular causes and cellular...
Published 11/20/2015    Read More...
Telomere assumes intra-molecular G-quadruplex that is a significant drug target for inhibiting telomerase maintenance of telomeres in cancer. Metal cations have been recognized as playing important roles in stabilizing G-quadruplex, but their binding processes to human telomeric G-quadruplex remain uncharacterized. To investigate the detailed binding procedures, molecular dynamics simulations were conducted on the hybrid [3 + 1] form-one human telomeric intra-molecular G-quadruplex. We show here...
Published 04/18/2015    Read More...
Alternative lengthening of telomeres (ALT) involves homology-directed telomere synthesis. This multistep process is facilitated by loss of the ATRX or DAXX chromatin-remodeling factors and by abnormalities of the telomere nucleoprotein architecture, including altered DNA sequence and decreased TRF2 saturation. Induction of telomere-specific DNA damage triggers homology-directed searches, and NuRD-ZNF827 protein-protein interactions provide a platform for the telomeric recruitment of homologous...
Published 11/04/2015    Read More...
Hepatocellular carcinoma (HCC) is a complex disease with a dismal prognosis. Consequently, a translational approach is required to personalized clinical decision making to improve survival of HCC patients. Molecular signatures from cirrhotic livers and single nucleotide polymorphism have been linked with HCC occurrence. Identification of high-risk populations will be useful to design chemopreventive trials. In addition, molecular signatures derived from tumor and nontumor samples are associated...
Published 11/04/2014    Read More...
Glioblastoma is the most prevalent primary brain tumor and is essentially universally fatal within 2 years of diagnosis. Glioblastomas contain cellular hierarchies with self-renewing glioblastoma stem cells (GSCs) that are often resistant to chemotherapy and radiation therapy. GSCs express high amounts of repressor element 1 silencing transcription factor (REST), which may contribute to their resistance to standard therapies. Telomere repeat-binding factor 2 (TRF2) stablizes telomeres and REST...
Published 06/07/2014    Read More...
Cellular senescence is the state of permanent proliferation cessation. There are two types of cell senescence. One is replicative senescence, which relies on telomere length-dependent limit of cell divisions. The second is stress-induced premature senescence (SIPS) which is telomere- independent. Cell senescence is a barrier to cancer. Paradoxically senescent cells, which are metabolically active secrete factors which can be procancerogenic. The main culprit of cell senescence is DNA damage and...
Published 02/17/2016    Read More...
A subset of human cancer cells uses a specialized, aberrant recombination pathway known as ALT to maintain telomeres, which in these cells are characterized by complex aberrations including length heterogeneity, high levels of unpaired C-strand, and accumulation of extra-chromosomal telomere repeats (ECTR). These phenotypes have not been recapitulated in any standard budding or fission yeast mutant. We found that eliminating Ku70 or Ku80 in the yeast-like fungus Ustilago maydis results initially...
Published 10/22/2015    Read More...
Foldback priming at DNA double-stranded breaks is one mechanism proposed to initiate palindromic gene amplification, a common feature of cancer cells. Here, we show that small (5-9 bp) inverted repeats drive the formation of large palindromic duplications, the major class of chromosomal rearrangements recovered from yeast cells lacking Sae2 or the Mre11 nuclease. RPA dysfunction increased the frequency of palindromic duplications in Sae2 or Mre11 nuclease-deficient cells by ∼ 1,000-fold,...
Published 11/07/2015    Read More...
The mammalian protein kinase ataxia telangiectasia mutated (ATM) is a key regulator of the DNA double-strand-break response and belongs to the evolutionary conserved phosphatidylinositol-3-kinase-related protein kinases. ATM deficiency causes ataxia telangiectasia (AT), a genetic disorder that is characterized by premature aging, cerebellar neuropathy, immunodeficiency, and predisposition to cancer. AT cells show defects in the DNA damage-response pathway, cell-cycle control, and telomere...
Published 08/28/2014    Read More...
While telomerase (hTERT) activity is absent from normal somatic cells, reactivation of hTERT expression is a hallmark of cancer cells. Telomerase activity is required for avoiding replicative senescence and supports immortalization of cellular proliferation. Only a minority of cancer cells rely on a telomerase-independent process known as alternative lengthening of telomeres, ALT, to sustain cancer cell proliferation. Multiple genetic, epigenetic, and viral mechanisms have been found to...
Published 10/02/2015    Read More...
Acquired aplastic anemia (AAA) is rare disorders caused due to the profound or almost complete bone marrow failure. It is a life threatening hematopoietic stem cells disorder, which is characterized by pancytopenia or complete loss of blood-forming cells. The aim of the present study is to screen for the mutations in telomerase complex genes, and to establish a molecular and hematological profile of Indian sub population....
Published 09/07/2015    Read More...
The acquisition of mutations is relevant to every aspect of genetics, including cancer and evolution of species on Darwinian selection. Genome variations arise from rare stochastic imperfections of cellular metabolism and deficiencies in maintenance genes. Here, we established the genome-wide spectrum of mutations that accumulate in a WT and in nine Saccharomyces cerevisiae mutator strains deficient for distinct genome maintenance processes: pol32Δ and rad27Δ (replication), msh2Δ (mismatch...
Published 01/21/2014    Read More...
Authors: L L. Trigueros-Motos Published: 05/26/2014, Clinical genetics PubMed Full Text...
Published 05/26/2014    Read More...
Mutations in the promoter of the telomerase reverse transcriptase (TERT) and fibroblast growth factor receptor 3 (FGFR3) genes constitute the most recurrent somatic alterations in urothelial carcinoma of bladder. In this study, we screened DNA from 327 urothelial bladder carcinomas from well-documented patients, with different stages and grades and known TERT promoter mutational status, for FGFR3 alterations and measured relative telomere length (RTL). Although, the frequency of the TERT...
Published 04/07/2015    Read More...
The DNA helicase RTEL1 participates in telomere maintenance and genome stability. Biallelic mutations in the RTEL1 gene account for the severe telomere biology disorder characteristic of the Hoyeraal-Hreidarsson syndrome (HH). Here, we report a HH patient (P4) carrying two novel compound heterozygous mutations in RTEL1: a premature stop codon (c.949A>T, p.Lys317*) and an intronic deletion leading to an exon skipping and an in-frame deletion of 25 amino-acids (p.Ile398_Lys422). P4's cells exhibit...
Published 02/05/2016    Read More...
Telomerase activity controls telomere length, and this plays an important role in stem cells, aging and tumors. Antioxidant was shown to protect telomerase activity in normal cells but inhibit that in cancer cells, but the underlying mechanism is elusive. Here we found that 7721 hepatoma cells held a higher redox homeostasis threshold than L02 normal liver cells which caused 7721 cells to have a higher demand for ROS; MnSOD over-expression in 7721 decreased endogenous reactive oxygen species...
Published 12/08/2015    Read More...
The telomere is considered to be a potential target for cancer therapy. NSC746364, a novel G-quadruplex-stabilizing agent, has been found to have cytotoxic effects on various cancer cells. To date, its pharmacological mechanisms are still unknown. The goal of this study was to investigate the molecular mechanisms of NSC746364 on the A549 human lung adenocarcinoma cell line. For this, we used a wide variety of in vitro assays. The intracellular signaling pathways including DNA damage sensing and...
Published 01/20/2014    Read More...
In general, nanoparticle-based materials are promising candidates for use in biological systems for diagnostic and therapeutic approaches. However, these materials' actions at the molecular level remain poorly understood. Nanoparticle (silica, silver and diamond)-induced oxidative stress and activation of the NF-κB pathway lead to the depletion of lamin B1 pools, which, in turn, results in upregulation of telomeric repeat binding factor (TRF) protein expression and maintenance of telomere...
Published 03/12/2015    Read More...
The human telomere repeat sequence 5'-TTAGGG-3' is a hot spot for oxidation at guanine, yielding 8-oxo-7,8-dihydroguanine (OG), a biomarker of oxidative stress. Telomere shortening resulting from oxidation will ultimately induce cellular senescence. In this study, α-hemolysin (α-HL) nanopore technology was applied to detect and quantify OG in the human telomeric DNA sequence. This repeat sequence adopts a basket G-quadruplex in the NaCl electrolyte used for analysis that enters the α-HL...
Published 03/17/2015    Read More...
Why mammalian cells possess multiple DNA glycosylases (DGs) with overlapping substrate ranges for repairing oxidatively damaged bases via the base excision repair (BER) pathway is a long-standing question. To determine the biological role of these DGs, null animal models have been generated. Here, we report the generation and characterization of mice lacking Neil2 (Nei-like 2). As in mice deficient in each of the other four oxidized base-specific DGs (OGG1, NTH1, NEIL1, and NEIL3), Neil2-null...
Published 08/05/2015    Read More...
It has been well established that the upregulation/reactivation of telomerase is a prerequisite for cellular immortalisation and malignant transformation. More significantly, perhaps, telomerase stands at the crossroads of multiple signalling pathways and its upregulation/reactivation leads to the modulation of critical cellular processes, including gene expression and metabolism. In recent years, this multifaceted ribonucleoprotein particle has become increasingly associated with the cancer...
Published 12/15/2015    Read More...
Fibroblasts from the progeroid Nijmegen breakage syndrome that express a truncated version of the nibrin protein (NBN(p70)) undergo premature senescence and have an enlarged morphology with high levels of senescence-associated β-galactosidase, although they do not have F-actin stress fibres. Growth of these fibroblasts in the continuous presence of p38 inhibitors resulted in a large increase in replicative capacity and changed the cellular morphology so that the cells resembled young normal...
Published 09/12/2014    Read More...
Telomeres are nucleoprotein structures capping the natural termini of eukaryotic linear chromosomes. Telomeres possess an inherent ability to circumvent the activation of a full-blown DNA damage response (DDR), and hence fusion reactions, by limiting inappropriate double-strand break (DSB) repair and processing activities at eukaryotic chromosome ends. A telomere-specific protein complex, termed shelterin, has a crucial function in safeguarding and securing telomere integrity. Within this...
Published 04/03/2015    Read More...
Telomeres, DNA-protein structures that cap and protect chromosomes, are thought to shorten more rapidly when exposed to chronic inflammation and oxidative stress. Diet and nutritional status may be a source of inflammation and oxidative stress. However, relationships between telomere length (TL) and diet or adiposity have primarily been studied cross-sectionally among older, overweight/obese populations and yielded inconsistent results. Little is known about the relationship between diet or body...
Published 10/26/2015    Read More...
Authors: Anna A. Postepska-Igielska, Ingrid I. Grummt Published: 01/13/2014, Cell cycle (Georgetown, Tex.) PubMed Full Text...
Published 01/13/2014    Read More...
A significant fraction of eukaryotic genomes comprises repetitive sequences, including rRNA genes, centromeres, telomeres, and retrotransposons. Repetitive elements are hotspots for recombination and represent a serious challenge for genome integrity. Maintaining these repeated elements in a compact heterochromatic structure suppresses recombination and unwanted mutagenic transposition, and is therefore indispensable for genomic stability. Paradoxically, repetitive elements are not...
Published 10/11/2013    Read More...
Analyses of the international human genome sequencing results in 2004 converged to a consensual number of ~20,000 protein-coding genes, spanning over <2% of the total genomic sequence. Therefore, the developmental and physiological complexity of human beings remains unaccounted if viewed only in terms of the number of protein-coding genes; the epigenetic influences involving chromatin remodelling and RNA interference and alternative precursor messenger RNA splicing of functional protein-coding...
Published 12/05/2014    Read More...
The Telomeric repeat amplification protocol (TRAP) is a highly sensitive PCR-based assay and prove to be an important tool for understanding the role of telomerase in cancer and various tissues that harbors telomerase positive stem cells. This assay measures telomerase activity where the amount of target is dependent upon the activity of the enzyme. This protocol consists of two steps: first, telomeric repeats are added to the substrate by telomerase present in the cell and second, the extended...
Published 04/01/2015    Read More...
Exposure of the telomere overhang acts as a DNA damage signal, and exogenous administration of an 11-base oligonucleotide homologous to the 3'-telomere overhang sequence (T-oligo) mimics the effects of overhang exposure by inducing senescence and cell death in non-small cell lung cancer (NSCLC) cells, but not in normal bronchial epithelial cells. T-oligo-induced decrease in cellular proliferation in NSCLC is likely directed through both p53 and its homolog, p73, with subsequent induction of...
Published 09/14/2013    Read More...
Under certain conditions, specific DNA sequences have the potential to adopt noncanonical secondary structures, such as i-motifs. Interestingly, these DNA stretches are not randomly located throughout the genome but rather frequently clustered in regulatory regions of oncogenes and in telomeres, the terminal regions of chromosomes. Recent evidences suggest that i-motif DNA structures exist in living cells and could be involved in a variety of biological processes, such as replication, regulation...
Published 06/24/2014    Read More...
Telomerase plays a pivotal role in bypassing cellular senescence and maintaining telomere homeostasis, essential properties required for the sustenance and progression of cancer. However, recent investigations have uncovered extratelomeric properties of telomerase that are independent of its role in telomere extension. This review summarizes recent insights to the noncanonical functions of telomerase reverse transcriptase (TERT) catalytic subunit, in particular in cancer progression, and...
Published 03/05/2014    Read More...
SLX4, a coordinator of multiple DNA structure-specific endonucleases, is important for several DNA repair pathways. Noncovalent interactions of SLX4 with ubiquitin are required for localizing SLX4 to DNA interstrand crosslinks (ICLs), yet how SLX4 is targeted to other functional contexts remains unclear. Here, we show that SLX4 binds SUMO-2/3 chains via SUMO-interacting motifs (SIMs). The SIMs of SLX4 are dispensable for ICL repair but important for processing CPT-induced replication...
Published 12/18/2014    Read More...
The shelterin complex protects chromosomal ends by regulating how the telomerase complex interacts with telomeres. Following the recent finding in familial melanoma of inactivating germline mutations in POT1, encoding a member of the shelterin complex, we searched for mutations in the other five components of the shelterin complex in melanoma families....
Published 12/13/2014    Read More...
It is commonly assumed that there is a single canonical DNA damage response (DDR) that protects cells from various types of double-strand breaks and that its activation occurs via recognition of DNA ends by the DDR machinery. Recent work suggests that both assumptions may be oversimplifications. Here, we discuss several variations of the DDR in which the pathway is activated by diverse cellular events and/or generates distinct signaling outcomes. The existence of multiple non-canonical DDRs...
Published 08/31/2015    Read More...
The ends of chromosomes in mammals are composed of telomeric DNA containing TTAGGG repeats, which bind specific proteins called shelterins. This telomeric DNA together with shelterins form a cap that protects the ends of chromosomes from being recognized as sites of DNA damage and from chromosomal fusions. Many very successful antitumor drugs used in the treatment of cancer patients bind to DNA, some of them with a prominent sequence specificity leads to changes in DNA structure and integrity....
Published 10/14/2014    Read More...
Oligonucleotides homologous to 3'-telomere overhang (T-oligos) trigger inherent telomere-based DNA damage responses mediated by p53 and/or ATM and induce senescence or apoptosis in various cancerous cells. However, T-oligo has limited stability in vivo due to serum and intracellular nucleases. To develop T-oligo as an innovative, effective therapeutic drug and to understand its mechanism of action, we investigated the antitumor effects of T-oligo or T-oligo complexed with a novel cationic alpha...
Published 12/17/2013    Read More...
Telomere length is emerging as a biomarker for aging and survival is paternally inherited and associated with parental lifespan. Telomere-associated cellular senescence may contribute to certain age-related disorders, including an increase in cancer incidence, wrinkling and diminished skin elasticity, atherosclerosis, osteoporosis, weight loss, age-related cataract, glaucoma and others. Shorter telomere length in leukocytes was associated cross-sectionally with cardiovascular disorders and its...
Published 11/27/2014    Read More...
Alternative lengthening of telomeres (ALT) is a homologous recombination (HR)-dependent mechanism for de novo synthesis of telomeric DNA in mammalian cells. Nuclear receptors are bound to the telomeres of cells that use ALT. Here we demonstrate that nuclear receptors recruit ZNF827, a zinc-finger protein of unknown function, which recruits the nucleosome remodeling and histone deacetylation (NuRD) complex via binding to an N-terminal RRK motif within ZNF827. This results in decreased shelterin...
Published 08/24/2014    Read More...
Forces generated by the cytoskeleton can be transmitted to the nucleus and chromatin via physical links on the nuclear envelope and the lamin meshwork. Although the role of these active forces in modulating prestressed nuclear morphology has been well studied, the effect on nuclear and chromatin dynamics remains to be explored. To understand the regulation of nuclear deformability by these active forces, we created different cytoskeletal states in mouse fibroblasts using micropatterned...
Published 12/22/2015    Read More...
Telomerase reverse transcriptase (TERT) is the predominant functional unit of telomerase and maintains the telomere length and the stability of chromosomes. Recently, TERT has been shown to be a critical factor in a number of other biological processes, including cell proliferation and cancer metastasis. In addition, although numerous studies have been conducted, the subcellular localization of the TERT protein and the association of such with cancer metastasis remains unclear. To investigate...
Published 11/07/2014    Read More...
The breakage-fusion-bridge cycle is a classical mechanism of telomere-driven genome instability in which dysfunctional telomeres are fused to other chromosomal extremities, creating dicentric chromosomes that eventually break at mitosis. Here, we uncover a distinct pathway of telomere-driven genome instability, specifically occurring in cells that maintain telomeres with the alternative lengthening of telomeres mechanism. We show that, in these cells, telomeric DNA is added to multiple discrete...
Published 02/28/2015    Read More...
DNA damage at the base sequence and chromosome level is a fundamental cause of developmental and degenerative diseases. Multiple micronutrients and their interactions with the inherited and/or acquired genome determine DNA damage and genomic instability rates. The challenge is to identify for each individual the combination of micronutrients and their doses (i.e. the nutriome) that optimises genome stability, including telomere integrity and functionality and DNA repair. Using nutrient array...
Published 10/11/2013    Read More...
Telomere shortening is associated with increasing age, male gender and lifestyle factors such as obesity and smoking. Inflammation has also been implicated in cellular senescence and may promote telomere shortening in chronic conditions such as obesity and diabetes. However, little is known about the relationship between markers of obesity and inflammation, and leukocyte telomere length (LTL)....
Published 09/10/2015    Read More...
Cancer is a leading cause of death worldwide and an estimated 1 in 4 deaths in the United States is due to cancer. Despite recent advances in cancer treatment, adverse effects related to cancer therapy remain a limiting factor for many patients. The ideal cancer treatment would selectively target cancerous cells while sparing normal, healthy cells to offer maximal therapeutic benefit while minimizing toxicity. Telomeres are structurally unique DNA sequences at the end of human chromosomes, which...
Published 10/22/2014    Read More...
The WRAP53 gene encodes both an antisense transcript (WRAP53α) that stabilizes the tumor suppressor p53 and a protein (WRAP53β) involved in maintenance of Cajal bodies, telomere elongation and DNA repair. WRAP53β is one of many proteins containing WD40 domains, known to mediate a variety of cellular processes. These proteins lack enzymatic activity, acting instead as platforms for the assembly of large complexes of proteins and RNAs thus facilitating their interactions. WRAP53β mediates...
Published 03/24/2015    Read More...
G-quadruplexes, alternative DNA secondary structures present in telomeres, emerge as promising targets for the treatment of cancer, because they prevent telomere elongation and accordingly cell proliferation. Within this study, theoretically validated pharmacophore- and shape-based models as well as a theoretically validated docking protocol were generated and applied in parallel for virtual screening and the identification of novel G-quadruplex ligands. Top-ranked hits retrieved with all...
Published 03/01/2016    Read More...
Oral squamous cell carcinoma (OSCC) is a common human malignant tumor with high mortality. So far, the molecular pathogenesis of OSCC remains largely unclear. Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is an important multi-function splicing factor and closely related to tumorigenesis. hnRNP A1 is overexpressed in various tumors, and promotes aerobic glycolysis and elongation of telomere, but the function of hnRNP A1 in cell cycle and proliferation remains unclear. We found that hnRNP A1...
Published 05/27/2015    Read More...
Authors: Brian T BT. Joyce, Lifang L. Hou Published: 11/26/2015, EBioMedicine PubMed Full Text...
Published 11/26/2015    Read More...
Authors: Megan C MC. King Published: 03/14/2014, Molecular biology of the cell PubMed Full Text...
Published 03/14/2014    Read More...
Revascularization of necrotic pulp has been successful in the resolution of periradicular inflammation; yet, several case studies suggest the need for cell-based therapies using mesenchymal stem cells (MSCs) as an alternative for de novo pulp regeneration. Because the availability of MSCs may be limited, especially in an aged population, the current study reports an alternative approach in generating MSCs from epidermal keratinocytes through a process called epithelial-mesenchymal transition...
Published 09/06/2014    Read More...
Telomere binding factors viz. TRF1 and TRF2 are a part of sheltrin complex that are present exclusively at the ends of chromosomes. These factors play an important role in maintaining chromosomal integrity at the ends. However, their status and role are not clear in renal cell carcinoma (RCC). Therefore, the present study was conducted to evaluate TRF1 and TRF2 expressions in RCC tissues. Further, the role of these factors involved in tumorigenesis was elucidated by gene silencing using siRNA in...
Published 03/02/2015    Read More...
Malignant pleural mesothelioma (MPM) is a very aggressive tumor with no known curative treatment. Better knowledge of the molecular mechanisms of mesothelial carcinogenesis is required to develop new therapeutic strategies. MPM, like all cancer cells, needs to maintain telomere length to prevent senescence. Previous studies suggested that the telomere lengthening mechanism in MPM is based mainly on telomerase activity. For this reason, we focused on the key catalytic enzyme, TERT (telomerase...
Published 08/26/2013    Read More...
5‑Fluorouracil (5‑FU) is a commonly used anti‑tumor chemotherapeutic drug for cervical carcinoma. However, increased drug resistance may occur following several cycles of 5‑FU‑based chemotherapy. Novel strategies of gene therapy for enhancing the sensitivity of cancer cells to 5‑FU chemotherapy have been intensively explored. Human telomerase reverse transcriptase (hTERT)C27 is a newly constructed hTERT C‑terminal polypeptide that is capable of promoting chromosome end‑to‑end...
Published 11/05/2013    Read More...
It has been documented that telomere-associated cellular senescence may contribute to certain age-related disorders, including an increase in cancer incidence, wrinkling and diminished skin elasticity, atherosclerosis, osteoporosis, weight loss, age-related cataract, glaucoma and others. Shorter telomere length in leukocytes was associated crosssectionally with cardiovascular disorders and their risk factors, including pulse pressure and vascular aging, obesity, vascular dementia, diabetes,...
Published 10/21/2014    Read More...
The histo-pathologic and molecular mechanisms leading to initiation and progression of hepatocellular carcinoma (HCC) are still ill-defined; however, there is increasing evidence that the gradual accumulation of mutations, genetic and epigenetic changes which occur in preneoplastic hepatocytes results in the development of dysplastic foci, nodules, and finally, overt HCC. As well as many other neoplasias, liver cancer is considered an "inflammatory cancer", arising from a context of...
Published 04/03/2014    Read More...
Reactive oxygen and nitrogen species have been implicated in diverse pathophysiological conditions, including inflammation, neurodegenerative diseases and cancer. Accumulating evidence indicates that oxidative damage to biomolecules including lipids, proteins and DNA, contributes to these diseases. Previous studies suggest roles of lipid peroxidation and oxysterols in the development of neurodegenerative diseases and inflammation-related cancer. Our recent studies identifying and characterizing...
Published 12/24/2014    Read More...
Evidence suggests that exposure to welding fumes is a risk factor for lung cancer. We examined relationships between low-to-moderate occupational exposure to particles from welding fumes and cancer-related biomarkers for oxidative stress, changes in telomere length, and alterations in DNA methylation. We enrolled 101 welders and 127 controls (all currently nonsmoking men) from southern Sweden. We performed personal sampling of respirable dust and measured 8-oxodG concentrations in urine using a...
Published 05/27/2015    Read More...
Poly(ADP-ribosyl)ation is known to be involved in a variety of cellular processes, such as DNA repair, cell death, telomere regulation, genomic stability and cell differentiation by poly(ADP-ribose) polymerase (PARP). While PARP inhibitors are presently under clinical investigation for cancer therapy, little is known about their side effects. However, PARP involvement in mesenchymal stem cell (MSC) differentiation potentiates MSC-related side effects arising from PARP inhibition. In this study,...
Published 10/19/2015    Read More...
Telomerase catalyzes telomeric DNA synthesis, an essential process to maintain the length of telomere for continuous cell proliferation and genomic stability. Telomerase is activated in gametes, stem cells, and most tumor cells, and its activity is tightly controlled by a catalytic human telomerase reverse transcriptase (hTERT) subunit and a collection of associated proteins.In the present work, normal human testis tissue was used for the first time to identify proteins involved in the...
Published 12/19/2015    Read More...
Phospholipase C-ε (PLCε) integrates signaling from G-protein coupled receptors (GPCRs) to downstream kinases to regulate a broad range of biological and pathophysiological responses. Relative to other PLCs, PLCε is unique in that it not only serves a catalytic function in phosphoinositide hydrolysis but also functions as an exchange factor small the low molecular weight G-protein Rap1. PLCε is selectively stimulated by agonists for GPCRs that couple to RhoA, which bind directly to the enzyme...
Published 10/05/2014    Read More...
The alternative lengthening of telomeres (ALT) mechanism allows cancer cells to escape senescence and apoptosis in the absence of active telomerase. A characteristic feature of this pathway is the assembly of ALT-associated promyelocytic leukemia (PML) nuclear bodies (APBs) at telomeres. Here, we dissected the role of APBs in a human ALT cell line by performing an RNA interference screen using an automated 3D fluorescence microscopy platform and advanced 3D image analysis. We identified 29...
Published 04/23/2015    Read More...
Deleterious germline variants in CDKN2A account for around 40% of familial melanoma cases, and rare variants in CDK4, BRCA2, BAP1 and the promoter of TERT have also been linked to the disease. Here we set out to identify new high-penetrance susceptibility genes by sequencing 184 melanoma cases from 105 pedigrees recruited in the UK, The Netherlands and Australia that were negative for variants in known predisposition genes. We identified families where melanoma cosegregates with loss-of-function...
Published 03/30/2014    Read More...
Authors: Sanjeet S. Bagcchi Published: 12/16/2014, The Lancet. Oncology PubMed Full Text...
Published 12/16/2014    Read More...
The telomere binding proteins play an important role in telomere function, which contribute greatly to the radio resistant in human cancers. This research is designed to investigate the relationship among the telomere length, telomerase activity and changes of telomere binding protein PTOP and TRF1 in radio resistant breast cancer cell lines....
Published 01/25/2014    Read More...
The emergence of a fatal transmissible cancer known as devil facial tumor disease (DFTD) is threatening the iconic Tasmanian devil with extinction in the wild within the next few decades. Since the first report of the disease in 1996, DFTD has spread to over 85% of the devils' distribution and dramatically reduced devil numbers. Research into DFTD has focused on gaining a deeper understanding of the disease on multiple levels, including an accurate assessment of the tissue origin of the tumor,...
Published 11/18/2013    Read More...
Authors: Sanjay S. Tanday Published: 05/10/2015, The Lancet. Oncology PubMed Full Text...
Published 05/10/2015    Read More...
Most tumors circumvent telomere-length imposed replicative limits through expression of telomerase, the reverse transcriptase that maintains telomere length. Substantial evidence that AKT activity is required for telomerase activity exists, indicating that AKT inhibitors may also function as telomerase inhibitors. This possibility has not been investigated in a clinical context despite many clinical trials evaluating AKT inhibitors. We tested if Perifosine, an AKT inhibitor in clinical trials,...
Published 09/22/2015    Read More...
Short telomeres in peripheral blood leukocytes are associated with older age and age-related diseases. We tested the hypotheses that short telomeres are associated with both increased cancer mortality and all-cause mortality....
Published 04/10/2015    Read More...
Telomeres use distinct mechanisms (not used by arms or centromeres) to mediate cohesion between sister chromatids. However, the motivation for a specialized mechanism at telomeres is not well understood. Here we show, using fluorescence in situ hybridization and live-cell imaging, that persistent sister chromatid cohesion at telomeres triggers a prolonged anaphase in normal human cells and cancer cells. Excess cohesion at telomeres can be induced by inhibition of tankyrase 1, a poly(ADP-ribose)...
Published 10/30/2013    Read More...
Few available data on the genomic-somatic evolution in breast cancer create limitation to provide the appropriate clinical managements. As an example, human subtelomeres (ST) are diverse-prone and variable targets. STs, as hot spots, have positive and negative impacts on the status of health and malady. We showed higher subtelomere signal copy number (SCN) of specific chromosomes in genomics than in auxiliary lymph node (ALN). Dissimilarity of signal intensity (SI) is found for all chromosomes....
Published 01/24/2015    Read More...
Some studies suggest that telomere length (TL) may be influenced by environmental exposures, including pesticides. We examined associations between occupational pesticide use reported at three time points and relative telomere length (RTL) in the Agricultural Health Study (AHS), a prospective cohort study of pesticide applicators in Iowa and North Carolina. RTL was measured by qPCR using leukocyte DNA from 568 cancer-free male AHS participants aged 31-94 years with blood samples collected...
Published 07/21/2015    Read More...
We reported that suramin is an effective chemosensitizer at noncytotoxic concentrations (<50 μM); this effect was observed in multiple types of human xenograft tumors in vitro and in vivo. Clinical evaluation of noncytotoxic suramin is ongoing. Because (a) suramin inhibits reverse transcriptase, (b) telomerase is a reverse transcriptase, and (c) inhibition of telomerase enhances tumor chemosensitivity, we studied the pharmacodynamics of noncytotoxic suramin on telomerase activity and telomere...
Published 11/26/2014    Read More...
I. Ta´rka´nyi, 3rd Department of Internal Medicine, University of Debrecen, 22 Moricz Zsigmond Krt., Debrecen 4004, Hungary, J. Aradi, Department of Biochemistry and Molecular Biology, University of Debrecen, 1 Egyetem te´r, Debrecen 4010, Hungary, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, 1 Egyetem te´r,...
Published     Read More...
Telomere length (TL) is a biomarker of accumulated cellular damage and human aging. Evidence in healthy populations suggests that TL is impacted by a host of psychosocial and lifestyle factors, including physical activity. This is the first study to evaluate the relationship between self-reported physical activity and telomere length in early stage breast cancer survivors....
Published 07/31/2014    Read More...
PinX1, a conserved nuclear protein, could maintain telomere integrity and plays an important role in regulating telomerase activity. It has been reported that the expression of PinX1 is down-regulated in some cancer and associated with cancer prognosis. However, the value of PinX1 in gliomas has not been studied. In this study, two independent retrospective gliomas cohorts with the corresponding gliomas tissue microarrays (TMAs) were established to detect the expression level of PinX1 and the...
Published 06/01/2015    Read More...
Small molecules that interact with G-quadruplex structures formed by the human telomeric region and stabilize them have the potential to evolve as anticancer therapeutic agents. Herein we report the interaction of a putative anticancer agent from a plant source, chelerythrine, with the human telomeric DNA sequence. It has telomerase inhibitory potential as demonstrated from telomerase repeat amplification assay in cancer cell line extract. We have attributed this to the quadruplex binding...
Published 01/21/2015    Read More...
Vitamin D may reduce telomere shortening through anti-inflammatory and anti-cell proliferation mechanisms. In women, higher plasma 25-hydroxyvitamin D (25(OH)D) has been shown to be associated with longer telomere length, but the relationship has not been assessed in men....
Published 11/11/2015    Read More...
Telomere maintenance, achieved by the binding of protective shelterin capping proteins to telomeres and by either telomerase or a recombination-based alternative lengthening of telomere (ALT) mechanism, is critical for cell proliferation and survival. Extensive telomere shortening or loss of telomere integrity activates DNA damage checkpoints, leading to cell senescence or death. Although telomerase upregulation is an attractive target for anti-cancer therapy, the lag associated with telomere...
Published 12/25/2015    Read More...
Natural plant products may possess much potential in palliative therapy and supportive strategies of current cancer treatments with lesser cytotoxicity to normal cells compared to conventional chemotherapy. In the current study, anti-cancer properties of plumbagin, a plant-derived naphthoquinone, on brain cancer cells were determined. Plumbagin treatment resulted in the induction of DNA damage, cell cycle arrest and apoptosis, followed by suppression of the colony forming ability of the brain...
Published 06/09/2015    Read More...
Maintenance of telomere is regulated by active telomerase complex, including telomerase holoenzyme and its associated proteins. The activity of telomerase is precisely controlled in cells, and its dysregulation is one of the hallmarks of cancer. The telomerase catalytic subunit human telomerase reverse transcriptase (hTERT) plays a central role for telomerase activity. In this study, we indentified that Polo-like kinase 1 (Plk1) is a novel telomerase-associated protein. Plk1 can interact with...
Published 06/12/2015    Read More...
Considering previous result in Non-Small Cell Lung Cancer (NSCLC), we investigated in human cancer cells the role of PARP3 in the regulation of telomerase activity....
Published 02/15/2014    Read More...
Mutations in the PARN gene (encoding poly(A)-specific ribonuclease) cause telomere diseases including familial idiopathic pulmonary fibrosis (IPF) and dyskeratosis congenita, but how PARN deficiency impairs telomere maintenance is unclear. Here, using somatic cells and induced pluripotent stem cells (iPSCs) from patients with dyskeratosis congenita with PARN mutations, we show that PARN is required for the 3'-end maturation of the telomerase RNA component (TERC). Patient-derived cells as well as...
Published 10/19/2015    Read More...
Exonuclease 1 (Exo1) has important roles in DNA metabolic transactions that are essential for genome maintenance, telomere regulation and cancer suppression. However, the mechanisms for regulating Exo1 activity in these processes remain incompletely understood. Here, we report that Exo1 activity is regulated by a direct interaction with poly(ADP-ribose) (PAR), a prominent posttranslational modification at the sites of DNA damage. This PAR-binding activity promotes the early recruitment of Exo1...
Published 09/30/2015    Read More...
Enzymatic activity of Telomerase Reverse Transcriptase (TERT) is important in maintaining the telomere length and has been implicated in cancer and aging related pathology. Since cancer susceptibility as well as longevity of dogs vary between breeds, this study involved sequencing the entire TERT gene of Canis familiaris from DNA samples obtained from forty dogs, with ten dogs each of four breeds: Shih Tzu, Dachshund, Irish Wolfhound, and Newfoundland, each with different life expectancies and...
Published 01/14/2014    Read More...
The actions of transcription factors, chromatin modifiers and noncoding RNAs are crucial for the programming of cell states. Although the importance of various epigenetic machineries for controlling pluripotency of embryonic stem (ES) cells has been previously studied, how chromatin modifiers cooperate with specific transcription factors still remains largely elusive. Here, we find that Pontin chromatin remodelling factor plays an essential role as a coactivator for Oct4 for maintenance of...
Published 04/10/2015    Read More...
Here, we set out to establish whether endogenous γ-H2AX is a biomarker in triple-negative breast cancer....
Published 03/26/2015    Read More...
Invasion, the representative feature of malignant tumors, leads to an increase in mortality. The malignant liver tumor - hepatocellular carcinoma (HCC) - has an enhanced invasive capacity that results in increased patient mortality. Moreover, this enhanced invasive capacity is due to the up-regulation of invasion promoters such as zinc finger protein SNAI1 (Snail) and matrix metalloproteinases (MMPs), and the down-regulation of invasion suppressor molecules such as E-cadherin. Telomerase reverse...
Published 04/13/2014    Read More...
The nuclear pore complex (NPC) serves as both the unique gate between the nucleus and the cytoplasm and a major platform that coordinates nucleocytoplasmic exchanges, gene expression, and genome integrity. To understand how the NPC integrates these functional constraints, we dissected here the posttranslational modifications of the nuclear basket protein Nup60 and analyzed how they intervene to control the plasticity of the NPC. Combined approaches highlight the role of monoubiquitylation in...
Published 01/19/2016    Read More...
Genome stability is essential for neural development and the prevention of neurological disease. Here we determined how DNA damage signaling from dysfunctional telomeres affects neurogenesis. We found that telomere uncapping by Pot1a inactivation resulted in an Atm-dependent loss of cerebellar interneurons and granule neuron precursors in the mouse nervous system. The activation of Atm by Pot1a loss occurred in an Atr-dependent manner, revealing an Atr to Atm signaling axis in the nervous system...
Published 06/06/2014    Read More...
Telomere maintenance is a universal cancer hallmark, and small molecules that disrupt telomere maintenance generally have anticancer properties. Since the vast majority of cancer cells utilize telomerase activity for telomere maintenance, the enzyme has been considered as an anticancer drug target. Recently, rational design of telomerase inhibitors was made possible by the determination of high resolution structures of the catalytic telomerase subunit from a beetle and subsequent molecular...
Published 12/02/2015    Read More...
Real time qPCR has become the method of choice for rapid large-scale telomere length measurements. Large samples sizes are critical for clinical trials, and epidemiological studies. QPCR has become such routine procedure that it is often used with little critical analysis. With proper controls, the mean telomere size can be derived from the data and even the size can be estimated. But there is a need for more consistent and reliable controls that will provide closer to the actual mean size can...
Published 08/12/2015    Read More...
Telomeres are located at chromosome ends and their length (TL) has been associated with aging and human diseases such as cancer. Whole blood DNA is frequently used for TL measurements but the influence of preanalytical conditions and DNA isolation methods on TL quantification has not been thoroughly investigated. To evaluate potential preanalytical as well as methodological bias on TL, anonymized leftover EDTA-whole blood samples were pooled according to leukocyte counts and were incubated with...
Published 12/04/2015    Read More...
Obesity and inactivity have been associated with advanced-stage prostate cancer, and poor prostate cancer outcomes, though the underlying mechanism(s) is unknown. To determine whether telomere shortening, which has been associated with lethal prostate cancer, may be a potential underlying mechanism, we prospectively evaluated the association between measures of adiposity, physical activity, and telomere length in 596 participants in the Health Professionals Follow-up Study, who were surgically...
Published 05/19/2015    Read More...
Recent epidemiological investigations have reported on the association between telomere length (TL) and a number of malignancies, including B-cell lymphoma (BCL). The reported results for BCLs are however inconsistent. We carried out a nested case-control study to determine whether TL is associated with future risk of BCL. Using quantitative polymerase chain reaction, the relative TL (i.e. the ratio of telomere repeat copy number to single gene copy number) was measured in mononuclear cell DNA...
Published 05/12/2014    Read More...
Authors: Hiroyuki H. Seimiya Published: 07/04/2015, EBioMedicine PubMed Full Text...
Published 07/04/2015    Read More...
Feline oral squamous cell carcinoma (SCC) has very poor prognosis. Here, a retrospective pilot study was conducted on 20 feline oral SCC patients who underwent stereotactic radiation therapy (SRT), to evaluate: (1) the value of putative tumour initiating cell (TIC) markers of human head and neck SCC (CD44, Bmi-1); (2) telomere length (TL) specifically in putative TICs; and (3) tumour relative telomerase activity (TA). Significant inverse correlations were found between treatment outcomes and...
Published 09/11/2014    Read More...
Cholangiocarcinoma (CCA) is the most common malignant heterogeneous polygenetic carcinoma with a high incidence in Asia. Most patients would die within 1 year after diagnosis and the 5 year survival rate is less than 10-20% worldwide. Single nucleotide polymorphisms (SNPs) in genes regulate telomere maintenance, mitosis, and inflammation, and may help predict individual susceptibility to certain drugs, environmental factor, and risks to particular diseases. The gene-gene interaction and the...
Published 08/15/2015    Read More...
Our understanding of hereditary cancer syndromes in children, adolescents, and young adults continues to grow. In addition, we now recognize the wide variation in tumor spectrum found within each specific cancer predisposition syndrome including the risk for hematologic malignancies. An increased understanding of the genetic mutations, biologic consequences, tumor risk, and clinical management of these syndromes will improve patient outcome. In this article, we illustrate the diversity of...
Published 05/26/2014    Read More...
Aging, a time-dependent functional decline of biological processes, is the primary risk factor in developing diseases such as cancer, cardiovascular or degenerative diseases. There is a real need to understand the human aging process in order to increase the length of disease-free life, also known as "health span". Accumulation of progerin and prelamin A are the hallmark of a group of premature aging diseases but have also been found during normal cellular aging strongly suggesting similar...
Published 05/15/2014    Read More...
Energy restriction in prenatal life has detrimental effects on later life health and longevity. Studies in rats have shown that the shortening of telomeres in key tissues plays an important role in this association....
Published 07/15/2015    Read More...
Clonal evolutionary processes can drive pathogenesis in human diseases, with cancer being a prominent example. To prevent or treat cancer, mechanisms that can potentially interfere with clonal evolutionary processes need to be understood better. Mathematical modeling is an important research tool that plays an ever-increasing role in cancer research. This paper discusses how mathematical models can be useful to gain insights into mechanisms that can prevent disease initiation, help analyze...
Published 07/22/2015    Read More...
The caps on the ends of chromosomes, called telomeres, keep the ends of chromosomes from appearing as DNA double-strand breaks (DSBs) and prevent chromosome fusion. However, subtelomeric regions are sensitive to DSBs, which in normal cells is responsible for ionizing radiation-induced cell senescence and protection against oncogene-induced replication stress, but promotes chromosome instability in cancer cells that lack cell cycle checkpoints. We have previously reported that I-SceI...
Published 07/23/2015    Read More...
Acquired uniparental disomy (aUPD) is a common finding in myeloid malignancies and typically acts to convert a somatically acquired heterozygous mutation to homozygosity. We sought to identify the target of chromosome 14 aUPD (aUPD14), a recurrent abnormality in myeloid neoplasms and population cohorts of elderly individuals. We identified 29 cases with aUPD14q that defined a minimal affected region (MAR) of 11.2 Mb running from 14q32.12 to the telomere. Exome sequencing (n=7) did not identify...
Published 05/20/2015    Read More...
Hutchinson-Gilford progeria (HGPS) is a premature ageing syndrome caused by a mutation in LMNA, resulting in a truncated form of lamin A called progerin. Progerin triggers loss of the heterochromatic marker H3K27me3, and premature senescence, which is prevented by telomerase. However, the mechanism how progerin causes disease remains unclear. Here, we describe an inducible cellular system to model HGPS and find that LAP2α (lamina-associated polypeptide-α) interacts with lamin A, while its...
Published 08/27/2015    Read More...
Authors: Fei F. Liu, Wen-Tao WT. Wang, Yong-Gang YG. Wei, Bo B. Li Published: 06/26/2014, Hepatology (Baltimore, Md.) PubMed Full Text...
Published 06/26/2014    Read More...
Our goal was to determine whether single-nucleotide polymorphisms (SNPs) of telomere maintenance genes influence the development and clinical outcomes of patients with hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC). We evaluated 20 SNPs of five telomere maintenance genes in 702 patients with HCC and 351 hepatitis B virus surface antigen-positive controls without HCC. Significant SNPs were then validated in an independent cohort of 857 HCC patients and 429 controls. We assessed...
Published 03/27/2014    Read More...
Expression of the telomerase reverse transcriptase (TERT) might be altered by activating mutations of the rs2853669 polymorphism within the promoter region. Here we investigate the impact of these genomic alterations on telomerase activation and dissect their prognostic potential in glioblastoma (GBM)....
Published 02/13/2015    Read More...
Children with high-grade glioma, including diffuse intrinsic pontine glioma (DIPG), have a poor prognosis despite multimodal therapy. Identifying novel therapeutic targets is critical to improve their outcome. We evaluated prognostic roles of telomere maintenance mechanisms in children with HGG, including DIPG. A multi-institutional retrospective study was conducted involving 50 flash-frozen HGG (35 non-brainstem; 15 DIPG) tumors from 45 children (30 non-brainstem; 15 DIPG). Telomerase activity,...
Published 01/30/2014    Read More...
To identify molecular markers that may be useful in the selection of gastric cancer patients with different prognoses, we investigated telomere function in gastric cancers with and without microsatellite instability (MSI)....
Published 12/23/2014    Read More...
To prospectively investigate the coronary artery status using coronary CT angiography (CCTA) in patients with Hodgkin lymphoma treated with combined modalities and mediastinal irradiation....
Published 03/07/2014    Read More...
Prostaglandin E2 (PGE2), a pleiotropic immunomodulatory molecule, and its free radical catalyzed isoform, iso-PGE2, are frequently elevated in the context of cancer and chronic infection. Previous studies have documented the effects of PGE2 on the various CD4+ T cell functions, but little is known about its impact on cytotoxic CD8+ T lymphocytes, the immune cells responsible for eliminating virally infected and tumor cells. Here we provide the first demonstration of the dramatic effects of PGE2...
Published 06/11/2014    Read More...
Telomeres are repetitive nucleoproteins that help maintain chromosomal stability by inhibiting exonucleolytic degradation, prohibiting inappropriate homologous recombination, and preventing chromosomal fusions by suppressing double-strand break signals. We recently observed that men treated for clinically localized prostate cancer with shorter telomeres in their cancer-associated stromal cells, in combination with greater variation in cancer cell telomere lengths, were significantly more likely...
Published 04/20/2015    Read More...
In a previous study, we have shown that shortening of telomeres by telomerase inhibition sensitized cancer cells to cisplatinum, slower their migration, increased DNA damage and impaired DNA repair [1]. In the following study, we present a network model combining microRNA and proteomic profiling attempting to decipher the molecular mechanism underlying the effect of shortened telomeres on the obtained phenotype of cancer cells [2]. The microRNA and proteomic data were used for a network model...
Published 12/18/2014    Read More...
Telomere maintenance by telomerase is impaired in the stem cell disease dyskeratosis congenita and during human aging. Telomerase depends upon a complex pathway for enzyme assembly, localization in Cajal bodies, and association with telomeres. Here, we identify the chaperonin CCT/TRiC as a critical regulator of telomerase trafficking using a high-content genome-wide siRNA screen in human cells for factors required for Cajal body localization. We find that TRiC is required for folding the...
Published 11/20/2014    Read More...
The effects of stress on ill health have become evident in recent years. Under acute stress situations, a cascade of physiological events helps the body mount an appropriate adaptive response. However, under chronic stress situations, this physiological response may lead to wear and tear on the body that accelerates the decline in physiological functioning and increases the risk of chronic conditions. Recent evidence for social stress experienced during childhood suggests serious consequences...
Published 04/30/2014    Read More...
Along with the increasing need for living-donor liver transplantation (LDLT), the issue of organ shortage has become a serious problem. Therefore, the use of organs from elderly donors has been increasing. While the short-term results of LDLT have greatly improved, problems affecting the long-term outcome of transplant patients remain unsolved. Furthermore, since contradictory data have been reported with regard to the relationship between donor age and LT/LDLT outcome, the question of whether...
Published 04/11/2014    Read More...
Synthetic genetic array (SGA) has been successfully used to identify genetic interactions in S. cerevisiae and S. pombe. In S. pombe, SGA methods use either cycloheximide (C) or heat shock (HS) to select double mutants before measuring colony size as a surrogate for fitness. Quantitative Fitness Analysis (QFA) is a different method for determining fitness of microbial strains. In QFA, liquid cultures are spotted onto solid agar and growth curves determined for each spot by photography and model...
Published 07/13/2015    Read More...
Chromosomal and genomic instability due to telomere dysfunction is known to play an important role in carcinogenesis. To study telomere shortening in the epidermis surrounding actinic keratosis, we measured telomere lengths of basal, parabasal, and suprabasal cells in epidermis with actinic keratosis (actinic keratosis group, n = 18) and without actinic keratosis (sun-protected, n = 15, and sun-exposed, n = 13 groups) and in actinic keratosis itself as well as in dermal fibroblasts in the 3...
Published 10/19/2013    Read More...
The telomere repeat amplification protocol (TRAP) for the human reverse transcriptase, telomerase, is a PCR-based assay developed two decades ago and is still used for routine determination of telomerase activity. The TRAP assay can only reproducibly detect ∼ 2-fold differences and is only quantitative when compared to internal standards and reference cell lines. The method generally involves laborious radioactive gel electrophoresis and is not conducive to high-throughput analyzes. Recently...
Published 05/26/2014    Read More...
A complex network of regulatory pathways links transcription to cell growth and proliferation. Here we show that cellular quiescence alters chromatin structure by promoting trimethylation of histone H4 at lysine 20 (H4K20me3). In contrast to pericentric or telomeric regions, recruitment of the H4K20 methyltransferase Suv4-20h2 to rRNA genes and IAP elements requires neither trimethylation of H3K9 nor interaction with HP1 proteins but depends on long noncoding RNAs (lncRNAs) that interact with...
Published 04/24/2014    Read More...
RAP1 (RAS proximate 1), a small GTP-binding protein of the RAS superfamily, is a putative oncogene that is highly expressed in several malignant cell lines and types of cancers, including some types of squamous cell carcinoma. However, the participation of RAP1 in cervical carcinogenesis is unknown. We conducted a cross-sectional study of paraffin-embedded cervical biopsies to determine the association of RAP1 with cervical intraepithelial neoplasia (CIN). Standard and quantitative...
Published 04/09/2015    Read More...
Authors: Justin G JG. Cooke Published: 06/16/2015, Journal of the National Cancer Institute PubMed Full Text...
Published 06/16/2015    Read More...
Authors: Xia X. Shen, Yiqiang Y. Zhan Published: 08/26/2015, Journal of the National Cancer Institute PubMed Full Text...
Published 08/26/2015    Read More...
RecQ helicases are a family of highly conserved proteins that maintain genomic stability through their important roles in replication restart mechanisms. Cellular phenotypes of RECQ1 deficiency are indicative of aberrant repair of stalled replication forks, but the molecular functions of RECQ1, the most abundant of the five known human RecQ homologues, have remained poorly understood. We show that RECQ1 associates with FEN-1 (flap endonuclease-1) in nuclear extracts and exhibits direct protein...
Published 05/22/2015    Read More...
hTERT is the key component of telomerase and its overactivation contributes to maintaining telomere length and cell immortalization. Previously, we identified RFPL3 as a new transcription activator of hTERT in lung cancers. However, the exact mechanism of RFPL3 in mediating hTERT activation and its associated signal regulatory network remain unclear. In this study, we found that RFPL3 colocalized and interacted directly with CBP in the nucleus of lung cancer cells. Immunohistochemical analysis...
Published 10/09/2015    Read More...
Telomeric 3' overhangs can fold into a four-stranded DNA structure termed G-quadruplex (G4), a formation which inhibits telomerase. As telomerase activation is crucial for telomere maintenance in most cancer cells, several classes of G4 ligands have been designed to directly disrupt telomeric structure....
Published 01/15/2014    Read More...
A fraction of cancer cells maintain telomeres through the telomerase-independent, 'Alternative Lengthening of Telomeres' (ALT) pathway. ALT relies on homologous recombination (HR) between telomeric sequences; yet, what makes ALT telomeres recombinogenic remains unclear. Here we show that the RNA endonuclease RNaseH1 regulates the levels of RNA-DNA hybrids between telomeric DNA and the long noncoding RNA TERRA, and is a key mediator of telomere maintenance in ALT cells. RNaseH1 associated to...
Published 10/21/2014    Read More...
Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in DNA replication, recombination, and repair. In fission yeast, the Rpa1-D223Y mutation provokes telomere shortening. Here, we show that this mutation impairs lagging-strand telomere replication and leads to the accumulation of secondary structures and recruitment of the homologous recombination factor Rad52. The presence of these secondary DNA structures correlates with reduced...
Published 06/03/2015    Read More...
DNA secondary structures that arise during DNA replication, repair, and recombination (3R) must be processed correctly to prevent genetic instability. Regulator of telomere length 1 (RTEL1) is an essential DNA helicase that disassembles a variety of DNA secondary structures to facilitate 3R processes and to maintain telomere integrity. The past few years have witnessed the emergence of RTEL1 variants that confer increased susceptibility to high-grade glioma, astrocytomas, and glioblastomas....
Published 02/25/2014    Read More...
Leukocyte telomere length(LTL) has been associated with age, self-reported race/ethnicity, gender, education, and psychosocial factors, including perceived stress, and depression. However, inconsistencies in associations of LTL with disease and other phenotypes exist across studies. Population characteristics, including race/ethnicity, laboratory methods, and statistical approaches in LTL have not been comprehensively studied and could explain inconsistent LTL associations....
Published 01/11/2016    Read More...
Telomerase-negative yeasts survive via one of the two Rad52-dependent recombination pathways, which have distinct genetic requirements. Although the telomere pattern of type I and type II survivors is well characterized, the mechanistic details of short telomere rearrangement into highly evolved pattern observed in survivors are still missing. Here, we analyze immediate events taking place at the abruptly shortened VII-L and native telomeres. We show that short telomeres engage in pairing with...
Published 11/06/2014    Read More...
Authors: Susan E SE. Stanley, Avani Dholakia AD. Rao, Dustin L DL. Gable, Sharon S. McGrath-Morrow, Mary M. Armanios Published: 09/04/2015, International journal of radiation oncology, biology, physics PubMed Full Text...
Published 09/04/2015    Read More...
The telomeric protein TRF2, involving in telomeric and extratelomeric DNA damage response, has been previously reported to facilitate multidrug resistance (MDR) in gastric cancer cells by interfering ATM-dependent DNA damage response induced by anticancer drugs. Rap1 is the TRF2-interacting protein in the shelterin complex. Complex formation between Rap1 and TRF2 is essential for their function in telomere and end protection. Here we focus on the effects of Rap1 on TRF2 function in DNA damage...
Published 03/30/2015    Read More...
The small G-protein Rap1 plays an important role in the regulation of endothelial barrier function, a process controlled largely by cellâ€"cell adhesions and their connection to the actin cytoskeleton. During the various stages of barrier dynamics, different guanine nucleotide exchange factors (GEFs) control Rap1 activity, indicating that Rap1 integrates multiple input signals. Once activated, Rap1 induces numerous signaling cascades, together responsible for the increased endothelial barrier...
Published 10/07/2014    Read More...
The mechanism of activation of the alternative lengthening of telomeres (ALT) pathway of mammalian chromosome-end maintenance has been unclear. We have now discovered that co-depletion of the histone chaperones ASF1a and ASF1b in human cells induced all hallmarks of ALT in both primary and cancer cells. These included the formation of ALT-associated PML (promyelocytic leukemia) bodies (APBs), the presence of extrachromosomal telomeric DNA species, an elevated frequency of telomeric sister...
Published 01/12/2014    Read More...
Although CDKN2A is the most frequent high-risk melanoma susceptibility gene, the underlying genetic factors for most melanoma-prone families remain unknown. Using whole-exome sequencing, we identified a rare variant that arose as a founder mutation in the telomere shelterin gene POT1 (chromosome 7, g.124493086C>T; p.Ser270Asn) in five unrelated melanoma-prone families from Romagna, Italy. Carriers of this variant had increased telomere lengths and numbers of fragile telomeres, suggesting that...
Published 03/30/2014    Read More...
Authors: Tomas L TL. Griebling Published: 02/18/2015, The Journal of urology PubMed Full Text...
Published 02/18/2015    Read More...
Authors: Anthony A. Atala Published: 11/23/2013, The Journal of urology PubMed Full Text...
Published 11/23/2013    Read More...
As a biomarker for early cancer diagnosis, telomerase are one of the promising targets for cancer therapeutics. Inspired by the fluorescent emission principle of aggregation-induced emission fluorogens, we creatively designed an AIE-based turn-on method to detect telomerase activity from cell extracts. A positively charged fluorogen (TPE-Z) is not fluorescent when freely diffused in solution. The fluorescence of TPE-Z is enhanced with the elongation of the DNA strand which could light up...
Published 06/22/2015    Read More...
Genome instability represents a primary hallmark of aging and cancer. RecQL helicases (i.e., RECQL1, WRN, BLM, RECQL4, RECQL5) as well as poly(ADP-ribose) polymerases (PARPs, in particular PARP1) represent two central quality control systems to preserve genome integrity in mammalian cells. Consistently, both enzymatic families have been linked to mechanisms of aging and carcinogenesis in mice and humans. This is in accordance with clinical and epidemiological findings demonstrating that defects...
Published 12/30/2014    Read More...
Various helicases and single-stranded DNA (ssDNA) binding proteins are known to destabilize G-quadruplex (GQ) structures, which otherwise result in genomic instability. Bulk biochemical studies have shown that Bloom helicase (BLM) unfolds both intermolecular and intramolecular GQ in the presence of ATP. Using single molecule FRET, we show that binding of RecQ-core of BLM (will be referred to as BLM) to ssDNA in the vicinity of an intramolecular GQ leads to destabilization and unfolding of the GQ...
Published 09/22/2014    Read More...
The telomere structure in the Iberian shrew Sorex granarius is characterized by unique, striking features, with short arms of acrocentric chromosomes carrying extremely long telomeres (up to 300 kb) with interspersed ribosomal DNA (rDNA) repeat blocks. In this work, we investigated the telomere physiology of S. granarius fibroblast cells and found that telomere repeats are transcribed on both strands and that there is no telomere-dependent senescence mechanism. Although telomerase activity is...
Published 05/19/2014    Read More...
Lymphoma is one of the most common malignancies in dogs. Canine lymphoma is similar to human non-Hodgkin's lymphoma (NHL) with shared clinical presentation and histopathological features. This study reports the construction of a comprehensive gene regulatory network (GRN) for canine diffuse large B-cell lymphoma (DLBCL), the most common type of canine lymphoma, and performs analysis for detection of major functional modules and hub genes (the most important genes in a GRN). The canine DLBCL GRN...
Published 02/09/2015    Read More...
Several somatic mutation hotspots were recently identified in the telomerase reverse transcriptase (TERT) promoter re