Telomere Science Library

Publications, Presentations, and Videos
about the Nobel-Prize Winning Science of Telomere Biology

Acute exercise leads to regulation of telomere-associated genes and microRNA expression in immune cells.

Authors: Warrick L WL. Chilton, Francine Z FZ. Marques, Jenny J. West, George G. Kannourakis, Stuart P SP. Berzins, Brendan J BJ. O'Brien, Fadi J FJ. Charchar
Published: 04/21/2014, PloS one


Telomeres are specialized nucleoprotein structures that protect chromosomal ends from degradation. These structures progressively shorten during cellular division and can signal replicative senescence below a critical length. Telomere length is predominantly maintained by the enzyme telomerase. Significant decreases in telomere length and telomerase activity are associated with a host of chronic diseases; conversely their maintenance underpins the optimal function of the adaptive immune system. Habitual physical activity is associated with longer leukocyte telomere length; however, the precise mechanisms are unclear. Potential hypotheses include regulation of telomeric gene transcription and/or microRNAs (miRNAs). We investigated the acute exercise-induced response of telomeric genes and miRNAs in twenty-two healthy males (mean age = 24.1±1.55 years). Participants undertook 30 minutes of treadmill running at 80% of peak oxygen uptake. Blood samples were taken before exercise, immediately post-exercise and 60 minutes post-exercise. Total RNA from white blood cells was submitted to miRNA arrays and telomere extension mRNA array. Results were individually validated in white blood cells and sorted T cell lymphocyte subsets using quantitative real-time PCR (qPCR). Telomerase reverse transcriptase (TERT) mRNA (P = 0.001) and sirtuin-6 (SIRT6) (P<0.05) mRNA expression were upregulated in white blood cells after exercise. Fifty-six miRNAs were also differentially regulated post-exercise (FDR <0.05). In silico analysis identified four miRNAs (miR-186, miR-181, miR-15a and miR-96) that potentially targeted telomeric gene mRNA. The four miRNAs exhibited significant upregulation 60 minutes post-exercise (P<0.001). Telomeric repeat binding factor 2, interacting protein (TERF2IP) was identified as a potential binding target for miR-186 and miR-96 and demonstrated concomitant downregulation (P<0.01) at the corresponding time point. Intense cardiorespiratory exercise was sufficient to differentially regulate key telomeric genes and miRNAs in white blood cells. These results may provide a mechanistic insight into telomere homeostasis and improved immune function and physical health.

PubMed Full Text