Telomere Science Library

Publications, Presentations, and Videos
about the Nobel-Prize Winning Science of Telomere Biology

Hsa-miR-520d converts fibroblasts into CD105+ populations.

Authors: Yoshitaka Y. Ishihara, Satoshi S. Tsuno, Satoshi S. Kuwamoto, Taro T. Yamashita, Yusuke Y. Endo, Junichi J. Hasegawa, Norimasa N. Miura
Published: 12/18/2014, Drugs in R&D

Background

We have previously shown that hsa-miR-520d-5p can convert cancer cells into induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs) via a dedifferentiation by a demethylation mechanism.

Methods

We tested the effect of miR-520d-5p on human fibroblasts to determine whether it could be safely used in normal cells for future clinical therapeutic applications. After we transfected the microRNA into fibroblasts, we analyzed the phenotypic changes, gene expression levels, and stemness induction in vitro, and we evaluated tumor formation in an in vivo xenograft model.

Results

The transfected fibroblasts turned into CD105+ cell populations, survived approximately 24 weeks, and exhibited increases in both the collagen-producing ability and in differentiation. Combinatorial transfection of small interfering RNAs for miR-520d-5p target genes (ELAVL2, GATAD2B, and TEAD1) produced similar results to miR-520d-5p transfection. These molecules converted normal cells into MSCs and not iPSCs.

Conclusions

In vitro data indicate the potent usefulness of this small molecule as a therapeutic biomaterial in normal cells and cancer cells because CD105+ cells never converted to iPSCs despite repeated transfections and all types of transfectants lost their tumorigenicity. This maintenance of a benign state following miR-520d-5p transfection appears to be caused by p53 upregulation. We conclude that miR-520d-5p may be a useful biomaterial at an in vitro level.

PubMed Full Text