Telomere Science Library

Publications, Presentations, and Videos
about the Nobel-Prize Winning Science of Telomere Biology

The detox strategy in smoking comprising nutraceutical formulas of non-hydrolyzed carnosine or carcinine used to protect human health.

Authors: Mark A MA. Babizhayev
Published: 11/12/2013, Human & experimental toxicology

Abstract

The increased oxidative stress in patients with smoking-associated disease, such as chronic obstructive pulmonary disease, is the result of an increased burden of inhaled oxidants as well as increased amounts of reactive oxygen species generated by various inflammatory, immune and epithelial cells of the airways. Nicotine sustains tobacco addiction, a major cause of disability and premature death. In addition to the neurochemical effects of nicotine, behavioural factors also affect the severity of nicotine withdrawal symptoms. For some people, the feel, smell and sight of a cigarette and the ritual of obtaining, handling, lighting and smoking a cigarette are all associated with the pleasurable effects of smoking. For individuals who are motivated to quit smoking, a combination of pharmacotherapy and behavioural therapy has been shown to be most effective in controlling the symptoms of nicotine withdrawal. In the previous studies, we proposed the viability and versatility of the imidazole-containing dipeptide-based compounds in the nutritional compositions as the telomere protection targeted therapeutic system for smokers in combination with in vitro cellular culture techniques being an investigative tool to study telomere attrition in cells induced by cigarette smoke (CS) and smoke constituents. Our working therapeutic concept is that imidazole-containing dipeptide-based compounds (non-hydrolyzed carnosine and carcinine) can modulate the telomerase activity in the normal cells and can provide the redox regulation of the cellular function under the terms of environmental and oxidative stress and in this way protect the length and the structure of telomeres from attrition. The detoxifying system of non-hydrolyzed carnosine or carcinine can be applied in the therapeutic nutrition formulations or installed in the cigarette filter. Patented specific oral formulations of non-hydrolyzed carnosine and carcinine provide a powerful manipulation tool for targeted therapeutic inhibition of cumulative oxidative stress and inflammation and protection from telomere attrition associated with smoking. It is demonstrated in this work that both non-hydrolyzed carnosine and carcinine are characterized by greater bioavailability than pure l-carnosine subjected to enzymatic hydrolysis with carnosinase, and perform the detoxification of the α,β-unsaturated carbonyl compounds present in tobacco smoke. We argue that while an array of factors has shaped the history of the 'safer' cigarette, it is the current understanding of the industry's past deceptions and continuing avoidance of the moral implications of the sale of products that cause the enormous suffering and death of millions that makes reconsideration of 'safer' cigarettes challenging. In contrast to this, the data presented in the article show that recommended oral forms of non-hydrolyzed carnosine and carcinine protect against CS-induced disease and inflammation, and synergistic agents with the actions of imidazole-containing dipeptide compounds in developed formulations may have therapeutic utility in inflammatory lung diseases where CS plays a role.

PubMed Full Text