Telomere Science Library

Publications, Presentations, and Videos
about the Nobel-Prize Winning Science of Telomere Biology

The asymmetry of telomere replication contributes to replicative senescence heterogeneity.

Authors: Thibault T. Bourgeron, Zhou Z. Xu, Marie M. Doumic, Maria M. Teresa Teixeira
Published: 10/15/2015, Scientific reports


In eukaryotes, the absence of telomerase results in telomere shortening, eventually leading to replicative senescence, an arrested state that prevents further cell divisions. While replicative senescence is mainly controlled by telomere length, the heterogeneity of its onset is not well understood. This study proposes a mathematical model based on the molecular mechanisms of telomere replication and shortening to decipher the causes of this heterogeneity. Using simulations fitted on experimental data obtained from individual lineages of senescent Saccharomyces cerevisiae cells, we decompose the sources of senescence heterogeneity into interclonal and intraclonal components, and show that the latter is based on the asymmetry of the telomere replication mechanism. We also evidence telomere rank-switching events with distinct frequencies in short-lived versus long-lived lineages, revealing that telomere shortening dynamics display important variations. Thus, the intrinsic heterogeneity of replicative senescence and its consequences find their roots in the asymmetric structure of telomeres.

PubMed Full Text