Telomere Science Library

Publications, Presentations, and Videos
about the Nobel-Prize Winning Science of Telomere Biology

Rapid growth accelerates telomere attrition in a transgenic fish.

Authors: Angela A. Pauliny, Robert H RH. Devlin, J├Ârgen I JI. Johnsson, Donald D. Blomqvist
Published: 08/14/2015, BMC evolutionary biology


Individuals rarely grow as fast as their physiologies permit despite the fitness advantages of being large. One reason may be that rapid growth is costly, resulting for example in somatic damage. The chromosomal ends, the telomeres, are particularly vulnerable to such damage, and telomere attrition thus influences the rate of ageing. Here, we used a transgenic salmon model with an artificially increased growth rate to test the hypothesis that rapid growth is traded off against the ability to maintain somatic health, assessed as telomere attrition.


We found substantial telomere attrition in transgenic fish, while maternal half-sibs growing at a lower, wild-type rate seemed better able to maintain the length of their telomeres during the same time period.


Our results are consistent with a trade-off between rapid growth and somatic (telomere) maintenance in growth-manipulated fish. Since telomere erosion reflects cellular ageing, our findings also support theories of ageing postulating that unrepaired somatic damage is associated with senescence.

PubMed Full Text