Telomere Science Library

Publications, Presentations, and Videos
about the Nobel-Prize Winning Science of Telomere Biology

p53 and hereditary cancer.

Authors: Diana D. Merino, David D. Malkin
Published: 09/09/2014, Sub-cellular biochemistry

Abstract

The roles of p53 as "guardian of the genome" are extensive, encompassing regulation of the cell cycle, DNA repair, apoptosis, cellular metabolism, and senescence - ultimately steering cells through a balance of death and proliferation. The majority of sporadic cancers exhibit loss of p53 activity due to mutations or deletions of TP53, and alterations in its signaling pathway. Germline TP53 mutations have been identified in a group of families exhibiting a rare but highly penetrant familial cancer syndrome, called the Li-Fraumeni syndrome (LFS). Between 60-80% of 'classic' LFS families carry mutant Trp53. The most frequent cancers observed are premenopausal breast cancer, bone and soft-tissue sarcomas, adrenal cortical carcinomas, and brain tumors. Penetrance is nearly 100% by age 70. Although TP53 is currently the only validated susceptibility locus recognized for LFS, recent studies have focused on the identification of genetic modifiers that may explain the wide phenotypic variability observed in LFS patients. Analyses of single nucleotide polymorphisms (SNPs), genome-wide copy number and telomere length have provided greater insight into the potential genetic modifiers of LFS. Moreover, the study of Trp53 mutant heterozygous mouse models has elucidated novel functions of p53, and offers insight into the mechanisms governing tumorigenesis in LFS. The key findings outlined in this chapter provide an overview of the molecular basis of LFS and the role of p53 in this unique heritable cancer syndrome.

PubMed Full Text