Telomere Science Library

Publications, Presentations, and Videos
about the Nobel-Prize Winning Science of Telomere Biology

Association of Insulin Resistance, Arterial Stiffness and Telomere Length in Adults Free of Cardiovascular Diseases.

Authors: Irina I. Strazhesko, Olga O. Tkacheva, Sergey S. Boytsov, Dariga D. Akasheva, Ekaterina E. Dudinskaya, Vladimir V. Vygodin, Dmitry D. Skvortsov, Peter P. Nilsson
Published: 08/26/2015, PloS one


Chronic inflammation and oxidative stress might be considered the key mechanisms of aging. Insulin resistance (IR) is a phenomenon related to inflammatory and oxidative stress. We tested the hypothesis that IR may be associated with cellular senescence, as measured by leukocyte telomere length (LTL), and arterial stiffness (core feature of arterial aging), as measured by carotid-femoral pulse wave velocity (c-f PWV).


The study group included 303 subjects, mean age 51.8 ±13.3 years, free of known cardiovascular diseases and regular drug consumption. For each patient, blood pressure was measured, blood samples were available for biochemical parameters, and LTL was analyzed by real time q PCR. C-f PWV was measured with the help of SphygmoCor. SAS 9.1 was used for statistical analysis.


Through multiple linear regression analysis, c-f PWV is independently and positively associated with age (p = 0.0001) and the homeostasis model assessment of insulin resistance (HOMA-IR; p = 0.0001) and independently negatively associated with LTL (p = 0.0378). HOMA-IR seems to have a stronger influence than SBP on arterial stiffness. In all subjects, age, HOMA-IR, LTL, and SBP predicted 32% of the variance in c-f PWV. LTL was inversely associated with HOMA-IR (p = 0.0001) and age (p = 0.0001). In all subjects, HOMA-IR, age, sex, and SBP predicted 16% of the variance in LTL.


These data suggest that IR is associated with cell senescence and arterial aging and could, therefore, become the main target in preventing accelerated arterial aging, besides blood pressure control. Research in telomere biology may reveal new ways of estimating cardiovascular aging and risk.

PubMed Full Text