Telomere Science Library

Publications, Presentations, and Videos
about the Nobel-Prize Winning Science of Telomere Biology

The mitochondrial lncRNA ASncmtRNA-2 is induced in aging and replicative senescence in Endothelial Cells.

Authors: Valentina V. Bianchessi, Ileana I. Badi, Matteo M. Bertolotti, Patrizia P. Nigro, Yuri Y. D'Alessandra, Maurizio C MC. Capogrossi, Marco M. Zanobini, Giulio G. Pompilio, Angela A. Raucci, Andrea A. Lauri
Published: 01/29/2015, Journal of molecular and cellular cardiology


Age-associated cardiovascular diseases are at least partially ascribable to vascular cell senescence. Replicative senescence (RS) and stress-induced premature senescence (SIPS) are provoked respectively by endogenous (telomere erosion) and exogenous (H2O2, UV) stimuli resulting in cell cycle arrest in G1 and G2 phases. In both scenarios, mitochondria-derived ROS are important players in senescence initiation. We aimed to define whether a mtDNA-transcribed long-non-coding-RNA (lncRNA), ASncmtRNA-2, has a role in vascular aging and senescence. Aortas of old mice, characterized by increased senescence, showed an increment in ASncmtRNA-2 expression. In vitro analysis of Endothelial Cells (EC) and Vascular Smooth Muscle Cells (VSMC) established that ASncmtRNA-2 is induced in EC, but not in VSMC, during RS. Surprisingly, ASncmtRNA-2 is not upregulated in two different EC SIPS scenarios, treated with H2O2 and UV. The p16 gene displayed similar ASncmtRNA-2 expression patterns, suggesting a possible co-regulation of the two genes. Interestingly, the expression of two miRNAs, hsa-miR-4485 and hsa-miR-1973, with perfect homology to the double strand region of ASncmtRNA-2 and originating at least in part from a mitochondrial transcript, was induced in RS, opening to the possibility that this lncRNA functions as a non-canonical precursor of these miRNAs. Cell cycle analysis of EC transiently over-expressing ASncmtRNA-2 revealed an accumulation of EC in the G2/M phase, but not in the G1 phase. We propose that ASncmtRNA-2 in EC might be involved in the RS establishment by participating in the cell cycle arrest in G2/M phase, possibly through the production of hsa-miR-4485 and hsa-miR-1973. This article is part of a Special Issue entitled: Mitochondria.

Copyright © 2015 Elsevier Ltd. All rights reserved.
PubMed Full Text