Telomere Science Library

Publications, Presentations, and Videos
about the Nobel-Prize Winning Science of Telomere Biology

Substrate trapping proteomics reveals targets of the βTrCP2/FBXW11 ubiquitin ligase.

Authors: Tai Young TY. Kim, Priscila F PF. Siesser, Kent L KL. Rossman, Dennis D. Goldfarb, Kathryn K. Mackinnon, Feng F. Yan, XianHua X. Yi, Michael J MJ. MacCoss, Randall T RT. Moon, Channing J CJ. Der, Michael B MB. Major
Published: 10/20/2014, Molecular and cellular biology


Defining the full complement of substrates for each ubiquitin ligase remains an important challenge. Improvements in mass spectrometry instrumentation and computation and in protein biochemistry methods have resulted in several new methods for ubiquitin ligase substrate identification. Here we used the parallel adapter capture (PAC) proteomics approach to study βTrCP2/FBXW11, a substrate adaptor for the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex. The processivity of the ubiquitylation reaction necessitates transient physical interactions between FBXW11 and its substrates, thus making biochemical purification of FBXW11-bound substrates difficult. Using the PAC-based approach, we inhibited the proteasome to "trap" ubiquitylated substrates on the SCF(FBXW11) E3 complex. Comparative mass spectrometry analysis of immunopurified FBXW11 protein complexes before and after proteasome inhibition revealed 21 known and 23 putatively novel substrates. In focused studies, we found that SCF(FBXW11) bound, polyubiquitylated, and destabilized RAPGEF2, a guanine nucleotide exchange factor that activates the small GTPase RAP1. High RAPGEF2 protein levels promoted cell-cell fusion and, consequently, multinucleation. Surprisingly, this occurred independently of the guanine nucleotide exchange factor (GEF) catalytic activity and of the presence of RAP1. Our data establish new functions for RAPGEF2 that may contribute to aneuploidy in cancer. More broadly, this report supports the continued use of substrate trapping proteomics to comprehensively define targets for E3 ubiquitin ligases. All proteomic data are available via ProteomeXchange with identifier PXD001062.

Copyright © 2015, American Society for Microbiology. All Rights Reserved.
PubMed Full Text