Telomere Science Library

Publications, Presentations, and Videos
about the Nobel-Prize Winning Science of Telomere Biology

Nanopore detection of 8-oxoguanine in the human telomere repeat sequence.

Authors: Na N. An, Aaron M AM. Fleming, Henry S HS. White, Cynthia J CJ. Burrows
Published: 03/17/2015, ACS nano


The human telomere repeat sequence 5'-TTAGGG-3' is a hot spot for oxidation at guanine, yielding 8-oxo-7,8-dihydroguanine (OG), a biomarker of oxidative stress. Telomere shortening resulting from oxidation will ultimately induce cellular senescence. In this study, α-hemolysin (α-HL) nanopore technology was applied to detect and quantify OG in the human telomeric DNA sequence. This repeat sequence adopts a basket G-quadruplex in the NaCl electrolyte used for analysis that enters the α-HL channel, slowly unfolds, and translocates. The basket fold containing OG disrupts the structure, leading to >10× increase in the unfolding kinetics without yielding a detectable current pattern. Therefore, detection of OG with α-HL required labeling of OG with aminomethyl-[18-crown-6] using a mild oxidant. The labeled OG yielded a pulse-like signal in the current vs time trace when the DNA strand was electrophoretically passed through α-HL in NaCl electrolyte. However, the rate of translocation was too slow using NaCl salts, leading us to further refine the method. A mixture of NH4Cl and LiCl electrolytes induced the propeller fold that unravels quickly outside the α-HL channel. This electrolyte allowed observation of the labeled OG, while providing a faster recording of the currents. Lastly, OG distributions were probed with this method in a 120-mer stretch of the human telomere sequence exposed to the cellular oxidant (1)O2. Single-molecule profiles determined the OG distributions to be random in this context. Application of the method in nanomedicine can potentially address many questions surrounding oxidative stress and telomere attrition observed in various disease phenotypes including prostate cancer and diabetes.

PubMed Full Text