Telomere Science Library

Publications, Presentations, and Videos
about the Nobel-Prize Winning Science of Telomere Biology

osteoporosis

Sort by:
Leukocyte telomere length (LTL) and bone mineral density (BMD) are associated with health and mortality. Because osteoporosis is an age-related condition and LTL is considered to be a biomarker of aging, we hypothesized that shorter LTL could predict lower BMD. The aim of our study was to assess whether there is an association of LTL with BMD and to determine whether this possible association is independent of age. The BMDs of the lumbar spine (LS), femoral neck (FN) and total hip (TH) were...
Published 04/11/2015    Read More...
  Mouse lifespan extended up to 24 percent with a single treatment. A number of studies have shown that it is possible to lengthen the average life of individuals of many species, including mammals, by acting on specific genes. To date, however, this has meant altering the animals' genes...
Published     Read More...
Telomerase reverse transcriptase (TERT) is a key component of the telomerase complex. By lengthening telomeres in DNA strands, TERT increases senescent cell lifespan. Mice that lack TERT age much faster and exhibit age-related conditions such as osteoporosis, diabetes and neurodegeneration. Accelerated telomere shortening in both human and animal models has been documented in conditions associated with insulin resistance, including T2DM. We investigated the role of TERT, in regulating cellular...
Published 06/23/2014    Read More...
Body mass index (BMI), bone mineral density (BMD), and telomere length are phenotypes that modulate the course of aging. Over 40% of their phenotypic variance is determined by genetics. Genome-wide association studies (GWAS) have recently uncovered >100 independent single-nucleotide polymorphisms (SNPs) showing genome-wide significant (p < 5 × 10-8) association with these traits....
Published 01/29/2016    Read More...
Leukocyte telomere length (LTL) is related to the aging of somatic cells. We hypothesized that LTL is inversely associated with mortality in elderly men. LTL was measured in 2744 elderly men (mean age 75.5, range 69-81years) included in the prospective population-based MrOS-Sweden study. Mortality data were obtained from national health registers with no loss of follow-up. During the follow-up (mean 6.0years), 556 (20%) of the participants died. Using Cox proportional hazards regression, tertile...
Published 04/30/2014    Read More...
A major medical challenge in the elderly is osteoporosis and the high risk of fracture. Telomere dysfunction is a cause of cellular senescence and telomere shortening, which occurs with age in cells from most human tissues, including bone. Telomere defects contribute to the pathogenesis of two progeroid disorders characterized by premature osteoporosis, Werner syndrome and dyskeratosis congenital. It is hypothesized that telomere shortening contributes to bone aging. We evaluated the skeletal...
Published 03/13/2014    Read More...
Telomere length is emerging as a biomarker for aging and survival is paternally inherited and associated with parental lifespan. Telomere-associated cellular senescence may contribute to certain age-related disorders, including an increase in cancer incidence, wrinkling and diminished skin elasticity, atherosclerosis, osteoporosis, weight loss, age-related cataract, glaucoma and others. Shorter telomere length in leukocytes was associated cross-sectionally with cardiovascular disorders and its...
Published 11/27/2014    Read More...
It has been documented that telomere-associated cellular senescence may contribute to certain age-related disorders, including an increase in cancer incidence, wrinkling and diminished skin elasticity, atherosclerosis, osteoporosis, weight loss, age-related cataract, glaucoma and others. Shorter telomere length in leukocytes was associated crosssectionally with cardiovascular disorders and their risk factors, including pulse pressure and vascular aging, obesity, vascular dementia, diabetes,...
Published 10/21/2014    Read More...
The progression of physiological ageing is driven by intracellular aberrations including telomere attrition, genomic instability, epigenetic alterations and loss of proteostasis. These in turn damage cells and compromise their functionality. Cellular senescence, a stable irreversible cell-cycle arrest, is elicited in damaged cells and prevents their propagation in the organism. Under normal conditions, senescent cells recruit the immune system which facilitates their removal from tissues....
Published 09/13/2014    Read More...
Rita Effros Presentation Summary for SENS (Aubrey de Grey) Conference 6 Sept 2007 R.B. Effros David Geffen School of Medicine at UCLA, Department of Pathology and Laboratory Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095-1732, USA The immune system plays a role not only in controlling infections, but...
Published     Read More...
The outcome of the Chernobyl nuclear power plant (CNPP) accident was that a huge number of people were exposed to ionizing radiation. Previous studies of CNPP clean-up workers from Latvia revealed a high occurrence of age-associated degenerative diseases and cancer in young adults, as well as a high mortality as a result of cardiovascular disorders at age 45-54 years. DNA tandem repeats that cap chromosome ends, known as telomeres, are sensitive to oxidative damage and exposure to ionizing...
Published 07/11/2014    Read More...
Telomere shortening has been associated with biological age and several chronic degenerative diseases. However, less is known about telomere length and frailty, which is an indicator of biological age. This study examines the association between telomere length and frailty in a prospective study over five years of 2006 men and women aged 65 years and older living in the community. The frailty status was determined by the Fried's criteria. Telomere length in leukocytes was measured using the...
Published 10/23/2015    Read More...