Telomere Science Library

Publications, Presentations, and Videos
about the Nobel-Prize Winning Science of Telomere Biology

Human dyskerin: beyond telomeres.

Authors: Alberto A. Angrisani, Rosario R. Vicidomini, Mimmo M. Turano, Maria M. Furia
Published: 04/30/2014, Biological chemistry


Human dyskerin is an evolutively conserved protein that participates in diverse nuclear complexes: the H/ACA snoRNPs, that control ribosome biogenesis, RNA pseudouridylation, and stability of H/ACA snoRNAs; the scaRNPs, that control pseudouridylation of snRNAs; and the telomerase active holoenzyme, which safeguards telomere integrity. The biological importance of dyskerin is further outlined by the fact that its deficiency causes the X-linked dyskeratosis congenita disease, while its over-expression characterizes several types of cancers and has been proposed as prognostic marker. The role of dyskerin in telomere maintenance has widely been discussed, while its functions as H/ACA sno/scaRNP component has been so far mostly overlooked and represent the main goal of this review. Here we summarize how increasing evidence indicates that the snoRNA/microRNA pathways can be interlaced, and that dyskerin-dependent RNA pseudouridylation represents a flexible mechanism able to modulate RNA function in different ways, including modulation of splicing, change of mRNA coding properties, and selective regulation of IRES-dependent translation. We also propose a speculative model that suggests that the dynamics of pre-assembly and nuclear import of H/ACA RNPs are crucial regulatory steps that can be finely controlled in the cytoplasm in response to developmental, differentiative and stress stimuli.

PubMed Full Text