Telomere Science Library

Publications, Presentations, and Videos
about the Nobel-Prize Winning Science of Telomere Biology

Ethanol-Associated Cardiomyocyte Apoptosis and Left Ventricular Dilation Are Unrelated to Changes in Myocardial Telomere Length in Rats.

Authors: Andrew R AR. Raymond, Jason J. Becker, Angela J AJ. Woodiwiss, Hendrik L HL. Booysen, Gavin R GR. Norton, Richard L RL. Brooksbank
Published: 06/21/2015, Journal of cardiac failure

Aim

The aim of this work was to determine whether ethanol-associated myocardial apoptosis and cardiac dilation are related to myocardial telomere shortening in rats.

Methods And Results

Sprague-Dawley (SD) rats received either drinking water with (ethanol: n = 19) or without (control: n = 19) 5% (v/v) ethanol ad libitum, for 4 months. Left ventricular (LV) dimensions and function (echocardiography and isolated perfused heart preparations), cardiomyocyte apoptosis (terminal deoxynucleotide transferase-mediated dUTP nick-end labeling), and leukocyte and myocardial telomere length (real-time polymerase chain reaction) were determined at the end of the study. Ethanol administration resulted in a marked increase in cardiomyocyte apoptosis (ethanol 0.85 ± 0.13% vs control 0.36 ± 0.06%; P = .0021) and LV dilation (LV end-diastolic diameter: ethanol 8.20 ± 0.14 mm vs control 7.56 ± 0.11 mm [P = .0014]; volume intercept at 0 mm Hg (V0) of the LV end-diastolic pressure-volume relationship: ethanol 0.40 ± 0.03 mL vs control 0.31 ± 0.02 mL [P = .020]). However, there were no changes in systolic chamber function as indexed by LV endocardial fractional shortening or the slope of the LV systolic pressure-volume relationship (end systolic elastance). The percentage of myocardial apoptosis was correlated with the degree of LV dilation (% apoptosis vs LV EDD: r = 0.39; n = 38; P = .021; vs V0: r = 0.44; n = 19; P = .046). No differences in leukocyte or cardiac telomere length were noted between the ethanol and control groups. Furthermore, cardiac telomere length was not associated with indexes of LV dilation (LVEDD and V0) or cardiomyocyte apoptosis.

Conclusions

Chronic ethanol-associated myocardial apoptosis and adverse remodeling occurs independently from changes in cardiac telomere length. Telomere shortening may not be a critical mechanism responsible for cardiomyocyte apoptosis and adverse cardiac remodeling.

Copyright © 2016 Elsevier Inc. All rights reserved.
PubMed Full Text